Auditing Systems Development: Leader’s Guide [image: image2.wmf]

INTOSAI IT AUDIT COMMITTEE

[image: image1.wmf]

for INTOSAI

IT

A

udit

T

raining

Auditing Systems Development
Leader’s Guide
March 2007
Table of Contents

1Module introduction

Introduction and overview
1
Session 1: IT project failures
13
Session 2: feasibility study and project initiation
19
Session 3: specification and procurement
45
Session 4: design and development
63
Session 5: system building and acceptance testing
86
Session 6: system implementation
105
Session 7: post implementation review
126
Session 8: rapid application development
137
Session 9: Alternative Development Methodologies
162
Session 10: the external auditor role and peer review
168

Module introduction

This two day module provides an audit perspective on each stage in the system development life cycle.

Audience

Auditors responsible for reviewing developing IT systems

Objectives

The trainee shall be able to review and report on:

· clients’ strategic planning process and documents;

· project initiation and feasibility studies;

· user requirement capture and specifications;

· system design and development standards, procedures and management;

· procedures for acceptance testing;

· strategies for migration to new systems; and

· post implementation reviews.

Contents

This module provides an audit perspective on each stage of the system development life cycle. The sessions are supported by case study material and checklists

Introduction and overview

Slide Intro/1: Module title

This introductory session should be used to describe the course administration arrangements, if this is necessary, to describe the various topics that are covered during the module, and to provide an introduction to the system development and procurement processes.

Method

Slide-show and discussion

Timing

30 minutes

Equipment required

Whiteboard

Flipchart

OHP/ or Audio Visual Unit

Handouts

Printed copies of the slides for the module.

Session objectives

The objectives of this introductory session are to:

· describe the administrative arrangements, and introduce the lecturers and delegates if this has not already been done;

· briefly describe the topics that are to be covered and, to place them in context.....

· provide an overview of the system development/procurement process;

· summarise the auditor’s role in this process (dealt with in much more detail later on).

Leader Guidance

The IT audit training needs of each SAI’s will be depend on their particular objectives and on the type of work they need to undertake in order to meet them. For example, some SAI’s may focus on performance audit (which for system development is covered in a separate module) others on auditing their clients’ financial statements. The INTOSAI training material has been designed to be modular or “free-standing”, and SAIs should carry out a training needs assessment to identify the modules that suit their particular needs.

The lecturer should be aware that SAIs’ auditing standards and working practices differ and this may require the training materials to be amended as necessary. Where the course is being delivered by a lecturer who is unfamiliar with the working practices or auditing standards applied in the trainees’ home countries, the trainees should be encouraged to ask questions or put forward suggestions of how their own practices differ. This should provide the lecturer with the opportunity to mould the course as it is delivered to make it as relevant as possible.

This module is in the form of lectures and discussions, and there is a syndicate exercise that can either be run in stages at appropriate parts of the course, or as a complete exercise at the end (in which case a complete day should be set aside for research and presentations). The lecturer should consider supplementing the sessions with video teaching aides on system development and procurement, project management, etc if these are available. Videos lend an external perspective to the subject which is often provided by acknowledged experts in the field.

The lecturer should stress that to get maximum benefit from the module, delegates should ask questions whenever a point requires clarification or expansion. The more interactive the sessions the better.

If the lecturer has not previously met the delegates he/she should start by providing details of their professional qualifications and practical experiences of:-

· financial audit;

· IT, IT security; and

· IT audit. (both carrying out controls reviews and teaching)

Because the roles and responsibilities of SAIs differ, this module makes no attempt within the body of the training material to distinguish between internal and external audit roles. Instead it focuses on the project risks which, if not effectively managed at an early stage, can act to damage or destroy the project. In this respect the training takes a proactive stance in which it is assumed that the audit objective (whether internal or external) is to draw top management’s’ attention to actual or potential failures to manage project risks effectively, and to provide supporting evidence. The training module on value for money auditing complements this approach by considering how the development process should be reviewed retrospectively, with the objective of reporting to top management, or perhaps a legislative body, on the outcome of the project.

Although the steps to be taken are well understood, the development and/or procurement of a computerised information system of any significance is rarely a straight forward process. Even the procurement and installation of an off-the-shelf packaged system will involve a variety of business and technical skills, while the development of a large distributed system (e.g. for tax assessment and collection, or social security) is likely to involve the full spectrum of business and IT skills. These include:-

· IT project management;

· business analysis (for strategic planning purposes);

· systems analysis and design;

· application development;

· IT infrastructure development:-

· computer and network operating systems;

· data communications (LANs and WANs);

· database and transaction processing system design;

· problem, change and configuration management;

· help desk and service level management;

· system, load and acceptance testing;

· IT procurement;

· IT security and business continuity planning;

· building services (structural alterations and environmental services);

· technical training.

Considering this potential range of activities, it is very unlikely that audit staff will completely understand every stage even if they have an IT background. The best that this module can achieve is to help delegates to understand the objectives of each stage of the system development life-cycle, and the points where failure to identify and manage both business and technical risks will inevitably result in the project running late and/or over budget; or perhaps consuming a large amount of resources to little or no useful effect.

However, while it is comparatively easy to understand the generic risks that can result in failure, in practice it is a much more difficult task for the auditor to judge whether they are being managed effectively. This is often the case where technical issues such as system design, development and testing are concerned. Depending on their audit objectives, it is likely that delegates will need to supplement the training provided in this module with more extensive training in specialist areas; for example, in systems analysis and design, IT security, IT programme and project management; and it may still be necessary to call on consultancy support in technically complex projects.

Overall this module aims to provide the delegates with sufficient insight into the systems development and procurement processes to enable them to review a simple IT project, or to assist as a team member in a larger and more complex project.”

The lecturer should inform the trainees that there is more than one way of managing a developing system. This module focuses on the basic issues which may be present in the majority of methodologies encountered. Other systems development methodologies are available and are likely to be similar to the method described in this module. The lecturer should determine what system development methodolgies are used locally and adapt the lessons and sessions in this module as necessary.

Much of the material contained in sessions 2,3 and 4 of this module is also dealt with in the module on “IT Methods”. The lecturer might therefore wish to concentrate on the IT audit issues (the final slide in each session) and avoid repeating a description of the various activities that are undertaken during these stages of the system development life-cycle.

Slide Intro/2: Course administration

This session begins by providing the trainees with details of relevant administrative details if this is necessary.

Course administrator: Who the administrator is, what they do and how can they be contacted.

Messages: Contact telephone numbers where messages can be left for trainees. Notice boards.

Ladies/Gents washrooms: Where ? Determine in advance and relate to trainees

Lunch and refreshments: Where, when, cost and what is supplied or available

Smoking: Relate office/local policy on smoking

Delegate/trainee introductions: The students should then be given the opportunity to introduce themselves to each other and the lecturers.

Course evaluation forms: When handed out and when required back. These forms should be used to gather feedback on the course presentation, contents and course materials to allow improvements to be made.

Groups: What method of group selection will be used / who will be in each group.

Slides Intro/3: Module objectives

This slide summarises the topics that will be covered during this module.

The lecturer should determine the trainees’ aims and objectives, and reconcile them to the pre-determined aims of this module. This should ensure that both leader and trainees have the same objectives and are moving towards a common goal;

This module compliments:-

· IT Methods (overviews of project management, system design, etc);

· Value For Money auditing (retrospective review of an IT project);

it aims to provide an understanding of:-

· project planning
· design and development
· system implementation
To understand the audit issues:

· in the time available the module cannot describe in detail all possible system development and procurement activities;

· instead it aims to provide delegates with an overview;
· that is, sufficient knowledge to:-

· understand the generic risks against the successful completion of an IT project;

· review a small (in terms its business/technical complexity) IT project;

· assist in the review of a larger project, assuming that appropriate technical support is available;

· IT projects risks are described within the Student Notes, and..............

· audit considerations are listed at the end of each chapter.

Slide Intro/4: Topics to be covered

This slide provides an overview of the various subject areas dealt with in this module.

IT project failures:

· this session discusses the main types of risks that can, and often do, act against the overall success of an IT project, and....

· the main management activities which, if effectively carried out, will reduce these risks to acceptable levels (they can never be removed completely);

· the Student Notes provide some case studies for the delegates to read at their leisure.

Feasibility Study and project initiation:

· discusses the importance of initial research to ensure that the:-

· problem to be solved is both properly understood;

· most cost-effective solution is provided;

· describes the requirements that are necessary for a well managed IT project;

Specification and procurement:

· involves both:-

· understanding the organisation’s business needs;

· specifying them in a manner which allows prospective suppliers (both internal and external) to propose innovative solutions;

· evaluating suppliers’ proposals;

· requirements to consider including in IT contracts.

Design and development:

· a technically complex area;

· this session describes the activities (but not the detail) undertaken at this stage.

System building and acceptance testing:

· assembling and configuring the system, including data conversion;

· operational and user acceptance testing.

System implementation:

· describes the various methods for bringing a new system into live use;

· covers IT security policy, business continuity, user training, service level agreement.

Post implementation review:

· retrospective survey to ascertain whether business needs satisfied by the new system.

Rapid Application Development:

· an evolving approach to development that involves ‘development by trial and error’.

Alternative Development Methodologies:

· discusses data-oriented system development, object-oriented system development, prototyping and other system development methodologies.

The External Auditor’s role:

· examines the role of external auditor in system development and the pros and cons of involvement at different phases.

Slide Intro/5: System development

This slide describes in outline the main, on-going activities that together constitute the system development life-cycle (SDLC).

Strategic Planning for IS/IT:

· this subject is covered in the IT Methods training module;

· the need for strategic (i.e. long term, all embracing) planning is a recognition of the facts that IT programmes and projects often involve:-

· large scale investment;

· long time-scales for delivery;

· high levels of risk;

· long term and widespread consequences if they do go wrong;

· careful thought and long term planning provides a strategy to minimise these risks.

The Feasibility Study:

· aim is to define problem to be solved and identify most cost-effective solution; e.g.:-

· develop the system;

· develop, but with altered scope and objectives from those proposed;

· outsource;

· defer development, or do not go ahead;

· the stage in the SDLC where this module starts;

· the feasibility study can be a significant project in its own right;

· may be necessary for other feasibility studies to be carried out during a long term project particularly where factors that affect the project’s outcome change;

Develop/procure and implement:

· these stages constitute the development project proper;

· feasibility study proposals taken forward into an operational system;

· less in-house system development because............

· commercially available packaged solutions increasingly offer acceptable solutions.

Review and update:

· Post Implementation Review (PIR); review what has been achieved:-

· have business needs been satisfied?

· have users’ needs been satisfied? (e.g. user friendly system?);

· what lessons can we learn for the future?

· need to update the system in order to:-

· fix deficiencies exposed during the PIR;

· manage the impacts of change.

Slide Intro/6: Approaches

This, and the following two slides, describes the two approaches to system development that are covered in this module.

The “Waterfall” approach:

· the traditional approach to system development;

· the project advances through a sequence of well defined steps;

· starts with analysis of user requirements

· finishes with successful completion of user acceptance testing;

· aim is to provide a 100% solution to user requirements;

· problems are:-

· full specification is a time-consuming task;

· no assurance that it has been done accurately until acceptance testing;

· thus, very late in the project before users see a working system;

· they might not like it, and......

· changes are increasingly expensive to implement at this stage; need to.....

· re-specify, re-design, re-develop and re-test - very expensive;

· overall, the waterfall is too slow to meet many business needs;

· advantages are:-

· best approach to critical systems because.....

· aims to deliver 100% of specified requirements;

· this involves thorough analysis and design stages.

Rapid Application Development (RAD):

· RAD approach aims to minimise the time necessary for delivery of a new system;

· recognises that businesses must respond quickly to new demands;

· unlike the waterfall, RAD aims at the 80/20 rule........

· 80% of the functionality can be delivered in 20% of time needed for 100%;
· therefore very quick and acceptable - rather than perfect - solutions;

· RAD approach involves:-

· small, development teams;

· users and developers co-operate closely throughout the project;

· extensive use of:-

· prototyping (building and improving models of the desired system);

· extensive use of Computer Assisted Software Engineering (CASE) tools;

· extensive use of user/developer workshops to agree on needs and results.

Slide Intro/7: The Waterfall

This slide illustrates the various stages involved in the Waterfall approach to system development.

The Waterfall commences at the specify needs stage. It then progresses through design, development and testing phases, at the successful completion of which the system is implemented.

It can be seen from the diagram that the time interval between the user first specifying requirements, and seeing a working system (at the testing stage) can be considerable. And by the time that testing is reached, fixing problems and altering user requirements becomes a very expensive process due to the number of development stages that must be re-worked.

However, the rigor that can be applied to each stage in the waterfall makes it a suitable approach for developing systems which need to be fully specified, and where errors and omissions cannot be tolerated (that is not to say that the waterfall results in error free systems!).

Slide Intro/8: Rapid Application Development

This slide shows an approach to Rapid Application Development.

There is no standard approach to RAD - indeed any approach to systems development that sets out specifically to deliver an acceptable solution to a defined business need in minimum time can be described as RAD.

However, standards are beginning to emerge principally on account of the unacceptably poor quality of some RAD developments (on the question of IT security, RAD has been described as “a hackers charter”). In the UK a group of companies have formed the DSDM (Dynamic Systems Development Method) Consortium in an effort to apply a defined standard to RAD developments, and DSDM is becoming widely accepted.

The DSDM approach is based on the construction and study of three models, or “prototypes. Each prototype might be an improvement on a previous version, a process known as “iteration”. It should not normally require more than three cycles of iteration at any one stage to build an acceptable prototype.

The three stages are to:-

· construct a functional prototype to understand and define user needs;

· construct an operational prototype is a properly engineered version of the functional prototype (it includes standards for security, backing up, system performance, etc);

· implement a live system: following implementation of the live system, further iterations may take place to incorporate operational improvements and other less important functionality that were omitted during design in order to speed up delivery of the essential business features.

Rapid construction of prototypes is made possible by close co-operation between users and developers, concentrating on the essential business needs, and extensive use of CASE tools.

Testing is integrated in the development process, rather than carried out as a separate stage of activity as in the waterfall.

Slide Intro/9: Summary

This slide summarises the main topics discussed during the session.

Module aims to provide....:

· development of IT systems often involves many different business and technical skills;

· this module can only provide an overview of the process, and.....

· identify the main types of project risks.

.....difficult judgements are involved:

· unlikely that an auditor will have a full grasp of all aspects of system development;

· may need specialist assistance to help with difficult judgements.

The Waterfall approach:

· traditional step-by-step approach;

· aims at the 100% solution;

· good where there is a need for a fully specified system;

· but problem is that waterfall is too slow to meet most business needs.

Rapid Application Development:

· only feasible if close developer/user co-operation is possible;

· also the 80/20 rule is acceptable;

· makes extensive use of CASE tools and prototyping to speed up development.

Session 1: IT project failures

Slide 1/1: introduction

The development and/or procurement of any significant computer system will involve high levels of investment in time and other resources. A successful project can have a considerable impact on an organisation’s ability to conduct its business in a competitive, cost-effective manner. However, IT projects have a reputation for failing to deliver the goods. When this happens, and there have been a number of well publicised IT project failures in the UK, considerable sums are wasted and the organisation, if it finishes up with any workable system at all, which is not always the case, will often suffer the consequences of its deficiencies for a lengthy period of time. The role of the IT auditor in an IT development project is therefore twofold:-

· first, to apply skills which the auditor ought to have in the area of internal controls with the aim of assisting the project team to deliver a well controlled system;

· second, to provide independent assurance to top management that standards of good practice are being adhered to, and that the system eventually delivered will satisfy the expected business needs.

The aim of this session is to review the generic risks which, although well understood, continue to result in unsatisfactory systems and, on occasions, in complete project failure. Some case studies, based on experience in the UK government sector, are included in the corresponding section of the Student Notes.
Method

Slide-show and discussion

Exercise

Timing

60 minutes

Equipment required

Whiteboard

Flipchart

OHP/ or Audio Visual Unit

Handouts

Printed copies of the slides for the module.

Printed copies of Exercise 1.1 and Solution(Exercise 1.1)

The lecturer should point out that some examples of unsuccessful IT projects from the UK public sector are described in chapter 1 of the Student Notes.

Slide 1/2: Topics covered

This slide describes the topics that will be covered during this session

IT project risks

Common management failures

Lessons to be learned

Exercise 1.1: Project Risks and Reasons for Project Failure

Divide the participants into various groups in such a way that each group has between 4-6 participants. Distribute Exercise 1.1 to the participants and ask them to read the various situations described in the exercise individually. Then each group can discuss about the various IT Project Risks (i.e., what all can go wrong with IT Projects) and also the reasons for failure of computerised projects. Each group may be requested to nominate a recorder to note down the views of the members of the group.

Remind the various groups after 10 minutes that they would have to windup their discussions in another 5 minutes.

After all the groups have completed their discussions, take up question number 1 in the exercise and request any group to come with one IT Project risks. Then move on to another group and so on. Carry on this process till the groups have completed all their responses.

Follow the same procedure for question 2 in the exercise. Thank all the groups for actively contributing to the discussions. Distribute Solution(Exercise 1.1) to all the participants.

Sum up the discussions by showing Slides 1/3 and 1/4

Slide 1/3: IT project risks

This, and the following slide provide a description of the types of risks that often impact on IT projects.

Risks are that a new system will:

· never be delivered: occasionally projects are abandoned altogether:-

· not necessarily a mark of failure - unpredictable events may have occurred to alter the business case;

· however, avoidable delays may also have occurred which equally destroy the justification for the new system - i.e. too late to be of any use;

· costs have risen to the extent that the business case is destroyed - the new system will cost more than the value of the benefits it can provide.

· be delivered late: a frequent project risk is that the new system will be delivered late;

· attributed to poor estimating due to:-

· difficulty of providing a reliable estimate for a type of development never previously attempted;

· over-enthusiasm for the project;

· wish to placate top management with politically acceptable, but unrealistic, data;

· exceed budget: another common project problem stemming from:-

· failure to set up effective contracts (e.g. performance targets, penalty clauses, liquidated damages);

· failure to control suppliers and contractors (e.g. conflicts on interests resulting in over-charging; unrealistic estimating);

· failure to monitor costs as they arise/poor project accounting;

· lack of competitive tendering;

· lack important functionality: stems from:-

· poor analysis and specification;

· inadequate testing against requirements specification;

· insufficient time and/or money to correct known errors and omissions;

Slide 1/3 continued

· not work as expected: flaws in translating the requirements into a working system:-

· adequate system response is a common problem;

· difficult to predict the number of messages that will arise, and....

· system bottlenecks;

· also, while system delivers the specified functionality, this can be bypassed;

· e.g. system provides password access control; but it is not enforced by the system;

· the longer a project drags on the increased risk that once delivered, business requirements will have changed such that the new system no longer delivers what users currently expect (i.e. the problems may have evolved).

· be difficult to use:
· an excessive number of menus to navigate to process a transaction;

· poor screen layout;

· poor/inadequate documentation and on-line help;

· report writer difficult to use (fairly common failing);

· be unreliable:

· hardware/data communications/environmental equipment prone to failure;

· inadequate data input and processing controls for rejecting invalid items;

· not inter-connect with other system:

· unable to exchange data directly with other systems because incompatible system interfaces;

· be difficult and costly to maintain and expand:

· lack of planning for growth;

· existing infrastructure cannot be expanded to handle additional traffic;

· inadequate system documentation, particularly of applications, therefore....

· system enhancements difficult and risky.

· not meet changing expectations:
· there is risk that the purpose of the system may change during its development;

· increased risk of the system becomming more expensive or not meeting revised goals.

Slide 1/4: common management failures

This slide describes the management failures that often result in unsuccessful IT projects.

Lecturer - see case studies in the corresponding section of the Student Notes. You may wish to replace or supplement these with your own examples.

Failure to assess and manage project risks:

· an unrealistic Business Case (no real justification to support the investment);

· the technology is untried, and doesn’t work as expected;

· the end users are not committed to the project and are not prepared to contribute to its success.

Ineffective project management:

· project managers who lack sufficient experience to take on a major task;

· lack of an effective project management method results in failure to apply appropriate management controls - the result is that costs, deadlines and quality run out of control;

· vague or incomplete specification of user requirements.

Mismanaging suppliers and consultants:

· failure to seek competitive tenders;

· vague terms of reference for consultants and open-ended contracts;

· failure to monitor and control consultancy costs;

· lack of independent quality assurance on consultants’ work.

System implementation failures:

· unrealistic delivery deadlines, resulting in work not being done properly or at all;

· inadequate testing resulting in inadequate quality work going undetected until live operation;

· unworkable or non-existent contingency plans, resulting in an inability to recover from system failures in live operation.

Slide 1/5: main lessons to be learned

This slide summarises the main lessons to be learned from IT project failures in the UK government sector.

The importance of risk assessment and risk management:

· risk assessment involves looking ahead and trying to identify the undesirable incidents that might damage the project;

· having identified project risks, risk management involves putting controls in place to prevent the risks from occurring, or to detect them should they occur and before they can damage the project.

Lecturer - see example of a risk assessment questionnaire in the annex to section 2 of the Student Notes.

Need for sound IT project management:

· organisations should adopt a reputable and appropriate methodology to support IT project management;

· although a methodology is no guarantee of success, it does provide a framework within which to work and identifies the types of controls that should be applied at different stages of the project and to different types of activities;

· there is no point in adopting a methodology if staff have not been trained in it, and are committed to it;

· don’t use an inexperienced project manager to manage a complex project.

An effective implementation plan:

· unrealistic implementation deadlines lead to short cuts being taken, particularly inadequate operational testing and user training;

· make sure that you can revert to the old system should the new system fail following implementation;

· parallel running, although expensive to carry out, can provide a high degree of assurance that the new system will work as expected;

· provide a workable business continuity plan for the longer term.

Session 2: Feasibility study and project initiation

Slide 2/1: Introduction

Before work commences on the development of a new system it is important to be sure that the underlying business needs have been properly understood, that what is proposed is worth doing when compared with other demands on an organisation’s limited resources, and that the technical solution that is adopted is likely to show the best return on investment. If a proposal appears viable, the costs, benefits and risks attached to each potential solution should therefore be analysed carefully.

These activities are carried out during a feasibility study. Where a potentially large scale development is involved this may be a significant project in its own right and involve a large number of the organisation’s staff assisted by external specialists. At the other end of the scale the feasibility of a proposal may be self-evident and be established during strategic planning.

Before work commences on system development, firm management control should be established over costs and progress. Roles and responsibilities should be allocated; the plans and product descriptions produced; procedures for change, configuration and quality management defined; and production targets and review points set. This stage of the system development life-cycle is referred to as project initiation.
Method

Slide-show and discussion

Timing

90 minutes

Equipment required

Whiteboard

Flipchart

OHP/ or Audio Visual Unit

Handouts

Printed copies of the slides for the module.

Slide 2/2: Topics covered

This slide describes the topics that will be covered during this session

The system development life-cycle:

· reviews the various steps in the life of an information system, from planning through to post implementation review.

The Feasibility Study:

· this attempts to answer three basic questions:-

· what is the problem to be solved?

· is it worth solving, taking account of other competing calls on our limited resources?

· what is the best solution, taking account of costs, benefits and risks to successful completion.

The Business Case:

· establishes the justification for the project in terms of its expected costs and benefits;

· provides a datum point against which the:-

· continuing viability of the project can be measured as work progresses;

· the overall success of the project can eventually be measured.

Investment appraisal:

· this is a technique for reducing the costs and benefits offered by a range of options to a common basis, and allowing a comparison to be made.

Development projects:

· a brief revision covering the nature of projects and IT project risks.

Project initiation:

· development projects can easily run out of control unless firm management control is established from the outset;

· this section describes the factors that have to be taken into account.

Slide 2/3: the system development life: cycle

This slide describes the “Waterfall” approach to system development. This is the traditional approach which is now being replaced for certain types of developments by Rapid Application Development (“RAD”) techniques. RAD is covered later in this module.

Planning:

· because IT systems generally require significant investment; often take considerable time to implement; and can have widespread and long-lasting consequences - particularly if they are unsatisfactory - IT should be very carefully planned;

· planning needs to identify the business needs that IT is to solve; time-scales for delivery; investment requirements; and the relative priority of each project in the plan.

Feasibility Study:

· identifies the problem(s) to be solved; confirms that it is worth solving; and identifies the most cost-effective solution.

Initiate project:

· is about establishing firm management control over the project at the outset, and establishing a framework of controls within which the system will be developed.

Specify needs:

· the end users’ requirements should be analysed and translated into a formal specification. This will be used by potential system and equipment suppliers, and to support software development and acceptance testing.

Develop/procure:

· following agreement of user requirements, work on developing and/or procuring the system can commence. During this stage of the life-cycle software, manuals, plans and training packages are developed.

Build and test:

· all the components that make up the system are assembled and tested against the requirements specification.

Implement and review:

· finally the system is brought into live use and, after a period of ‘settling in’, is reviewed against the original business case to assess the extent of its success.

Slide 2/4: feasibility study and project initiation

This slide illustrates the outputs produced at the end of the feasibility study and the project initiation stages of the life-cycle.

Strategic planning:

· an output from the strategic planning stage is a prioritised list of development projects that are needed to implement the strategy - sometimes referred to as a “project portfolio”.

Feasibility study:

· for small scale developments it is possible that work undertaken during strategic planning will be sufficient to establish the feasibility of a project proposal; but....

· often a separate feasibility study is necessary. This might recommend, for example, that:-

· the proposal should not go ahead, perhaps because it is too difficult or expensive to do; there is too high a risk of failure; or the original business need has either disappeared or could be better satisfied by some other means;

· the proposal should go ahead, but it should be postponed or its scope reduced;

· the business requirement in question should be contracted out.

Project initiation:

· where an IT project is to take place, experience shows that there is a high risk of failure unless strong control is exercised from the start;

· a project plan (or “project initiation document”) should be produced to formally set out the project objectives, describe in detail the main deliverables, and show exactly how the project is to be organised and controlled;

· the project plan or initiation document should be reviewed and approved by a steering committee (or “Project Board”) before the work commences;

· it is an important document for the auditor because a well designed project plan provides much of the criteria against which to audit compliance.

Slide 2/5: the Systems Analyst

This slide considers the role of the Systems Analyst

Users generally know what they need, but do not necessarily have the technical skills to obtain it.

Programmers and other technical developers have the necessary expertise, but often lack the background that is necessary to fully understand the users’ problem(s).

The Systems Analyst’s role is to translate user needs into the specifications that are needed to implement a system.

The Analyst’s first task is to develop a precise “problem definition”. This is a formal statement prepared by the Analyst that is based on observation, discussion and research.

“Problem definition” often forms a part of a more extensive “feasibility study”.

Slide 2/6: the Feasibility Study

This slide describes the objectives and approach to a feasibility study

What exactly is the problem?:

· problem still exists? - we live in a changing world, and the nature of the business might have changed in the time between the original proposal being put forward and the time that resources could be made available (perhaps a couple of years) to analyse it;

· problem is properly understood? - there is no point in developing a system that only partly solves the problem, or doesn’t solve it at all.

Can it be solved?:

· is it technically and economically feasible to solve the problem?

Is it worth solving?:

· for example, it might not be worth enhancing a legacy system that is scheduled for replacement, or a mainframe computer where the organisation’s strategy is to move to client server technology.

Analysing users’ requirements:

· the users’ need must be analysed in sufficient detail to enable the problem to be properly understood;

· the analysis of the problem should be documented both in narrative and in diagrammatic form (e.g. screen layouts, data structures, process diagrams) to aid understanding;

· the analysis must be carefully explained to, and signed off by the user to signify their understanding and agreement.;
Preliminary design to identify options:

· following analysis the study team will need to decide whether it is technically and economically feasible to satisfy the problem? (i.e. the “business need”); and if it is......

· this will involve some preliminary design but only sufficient to identify feasible options;

Perhaps build a prototype or pilot system:

· Computer Assisted Software Engineering (CASE) tools enable prototypes of parts of the system, or even whole systems, to be built quickly;

· for large scale developments it may be economic to develop a pilot operational system.

Slide 2/7: logical design

If problem definition suggests that the problem can be solved and should be solved, the next step is to determine what must be done to solve it. The object is to develop a “logical system” - that is, one which makes no assumptions about the software, hardware or communications equipment that will be used to implement it.

What must be done to solve the problem:

· in principle, logical design concentrates on providing a solution to the users’ problem(s);

· the designer is not constrained by any physical restrictions that might be imposed by physical components, such as the hardware or programming language;

· the resulting logical design is therefore “portable” - it does not depend on any particular type of computer, operating or database management system.

Logical design techniques include:

· data flow diagrams;

· logical data structures;

· entity life histories.

These techniques were covered in the IT Methods module. The following slides provide a brief revision.
Slide 2/8: data flow diagram symbols

This slide illustrates the four symbols that may be used to construct a data flow diagram

Although only four symbols are used in DFDs, the data flow symbol (an arrow) is the only one that appears to have universal acceptance.

Data source or destination:

· is a person or part of an organisation which enters or receives data from the system;

· they may be duplicated within a diagram to permit simpler presentation.

Processes:

· processes change incoming data flows into outgoing data flows;

· it helps presentation if they are named using descriptions that convey an impression of what happens to the data as it is processed;

· helpful verbs include extract, compute, recover, create, produce, store, verify;
· e.g. verify that the customer is credit worthy;

· however, descriptions such as sort records into alphabetical sequence, or Accounts Clerk extracts Supplier Code are not allowed because they represent physical commitments to how the operation will be carried out .

Data stores:

· a data store is a repository of data; it may be a card index, a database file, or a wastepaper basket;

· the important thing is that the physical representation is irrelevant - it is the logical requirement that is important;

· single headed arrows entering or leaving a data store show WRITE and READ operations;

· a double headed arrow shows that data held in the store is being altered.

Data flows:

· a data flow is a route which enables packets of data to travel from one point to another;

· data may flow from a source to a process, or to and from a data store or process;

· the arrow indicates the direction of flow.

Slide 2/9: data flow diagram: inventory

This slide provides a example of a data flow diagram for a simple inventory system

1. Transactions flow from the customer into the system.

2. A data store - STOCK - holds data on each item in inventory.

3. “Process Transactions” changes stock levels in response to transactions.

4. MANAGEMENT accesses the system through “Communicate” to evaluate the data held in STOCK and, if necessary, request a re-order.

5. Once a re-order is authorised, “Generate Re-order” sends the necessary data to SUPPLIER, who ships the item(s) to the store.

6. To fill an order the SUPPLIER needs the product code and re-order quantity - these are output by “Generate Re-order”.

7. Data flows into “Generate Re-order” from STOCK, so product code and re-order quantities must be part of the data held by STOCK.

Slide 2/10: logical design

This slide illustrates key components of the logical design stage in the development lifecycle

Logical Design

In addition to designing the logical process to be followed, the Analyst will normally create a “data dictionary” in which to store definitions and other information about the data used in the logical design, and “algorithms” which provide outline descriptions of each of the processes covered in the design together with their data inputs and outputs.

Special software tools (“CASE” - computer assisted software engineering - tools) have been developed to automate much of the logical design process, including tools which implement particular design methodologies such as SSADM (structured systems analysis and design method).

Slide 2/11: physical system design

Physical design is the process by which the “concept” within the logical design is translated into a real world system.

Specifies how the system is to operate:

· logical design is a ‘concept’ that does not relate to the real world;

· physical design involves translating this concept into a real-world, operational system;

· this involves preparing a detailed specification of the way the system will operate in a specific environment, using specific equipment and people;

· physical design is comprised of:-

· data and program specifications, tuned so that they will comply with performance criteria;

· operational and user manuals and procedures;

· testing procedures.

Tasks include designing:

· physical design specifies how the system will work in practice;

· it is important to ensure that the physical design is in step with the existing IT infrastructure and with policies that are embedded within the organisation’s IT Strategy (see Strategic Planning in the IT Methods module);

· items that the designers will have to take account of will include:-

· the database management system in use;

· what, if any, data dictionary is in use;

· what programming language is to be used;

· the required hardware configuration;

· the data input methods to be employed;

· screen formats, dialogues and reports.

Slide 2/12: system flowchart

This slide illustrates how a start can be made on translating a logical design (in this case, the data flow diagram shown on slide 9) into a physical design with the aid of a system flowchart.

Slide 9 shows a data flow diagram for a simple inventory system. This describes, in broad terms, what needed to be done but not how.

The next stage is to decide on the ‘how’.

The system flowchart on the slide shows that:-

- transaction data is entered through a terminal;

- after acceptance by the system, transactions are processed and stored on an inventory file;

- this file is processed by management who manipulate the data and process orders.

Slide 2/13: the Feasibility Study Report

This slide discusses the content of a Feasibility Study Report

Lecturer - you should be aware of the model for a feasibility report contained in the annex of the corresponding section of the Student Notes.
The end product of the Feasibility Study:

· this is a formal report to the Project Board or Steering Committee

· its object is to enable them to decide on an appropriate course of action; that is, whether the proposal is viable and should go ahead - and if so, in what form - or whether it should be terminated;

· the report should be non-technical in order that it can be properly understood by non-technical managers;

· the report should explain exactly:-

· why the system is needed;

· what business needs it will satisfy, and how these relate to the Corporate Plan (if no link can be established with the Corporate Plan, one must question the need for the system);

· what options exist for satisfying the requirement;

· which is the preferred option, and why;

· how the eventual success of the project is to be measured.

Slide 2/14: the Business Case

The Business Case provides the justification for the project to go ahead.

For each option considered.......:

· most problems can be solved in a number of different ways, and part of the feasibility study will be to identify what options exist;

· careful study of the advantages and disadvantages associated with each option will help to ensure that the optimum combination of good value for money and low risk of failure is obtained;

· the Feasibility Report should contain sufficient information to allow the Project Board to evaluate each option for themselves, and to see why the preferred option has been recommended;

· for each option the Report should explain:-

· any important assumptions that have been made (e.g. the technology will work);

· how well each option fits with the organisation’s IT Strategy;

· what the risks are to successful completion;

· how long the option will take to deliver;

· the estimated cost.

For the preferred option:

· the report should also outline project plans and budgets;

· outline plans should take account of the:-

· required delivery date for the system;

· availability of finance;

· availability of staff and any other resources;

· development, building, training, testing lead times;

· external constraints, such as the earliest dates that suppliers can meet.

Slide 2/15: investment appraisal

Investment appraisal is a technique which helps to identify which alternative offers the best value for money from a range of possible options

Investment appraisal involves:

· analysing costs, benefits and pay back period - predicting the pattern in which costs and benefits are likely to arise over the life of the system (e.g. 5 years for office systems; 7 years for mid-range; 10 years for large mainframes);

· The costs will depend upon the method of financing used to fund the project;

· costs are generally much easier to predict than benefits;

· “soft” benefits are difficult to express in monetary terms (e.g. improved corporate image, improved staff morale; better management control, etc);

· “pay back period” - the time required for the value of benefits to exceed the value of costs;

· weighing up the risks attached to each option; these should be identified and measured (e.g. low, medium or high);

· for example, leading edge technology; untried supplier; possible change in government policy, etc are some factors that affect risk assessment;

· assessing the balance between different options; investment appraisal should be carried out for each option identified during the feasibility study to allow comparisons to be made.

Aim is to select the option that offers the optimum combination of value for money and risk to a successful outcome.

Slide 2/16: cost/benefit analysis

Part of the investment appraisal involves predicting the likely pattern, in monetary terms, of costs and benefits over the life of the system. This is referred to as a “cost/benefit analysis”.

Lecturer - you should review the examples of costs and benefits that appear in the corresponding section in the Student Notes before delivering this slide.

Cost/benefit analysis:

· involves estimating, over the expected life of the system:-

· development and operational costs;

· tangible and intangible benefits;

· main problem lies in identifying all types of benefits to be delivered by the new systems, and expressing these in realistic monetary terms;

· an attempt must be made to express benefits in monetary terms; but........

· where valuation is clearly unreliable, a description of the benefit should be included in the analysis together with the indicators against which its achievement can be measured.

Discounted cash flow (“DCF”):

Lecturer - please see the example of a DCF calculation in the annex to the corresponding section of the Student Notes.

· DCF is a technique for reducing a stream of costs and benefits that arise over a number of years to their equivalent present day values;

· it is based on the premise that “jam today is worth more than jam tomorrow” - in other words the sooner money arises, the more valuable it is;

· it uses “discount factors” (these appear in “actuarial tables”) to discount future sums to their equivalent present day values;

· this allows comparisons to be made between different options that produce streams of costs and benefits over different time periods;

· discounted costs and benefits are netted off, and are accrued to produce a rolling “net present value” (NPV). This identifies the point at which real net benefit is achieved.

Slide 2/17: what is a project?

Project management is covered in more detail in the module on IT Methods. This, and the following slides briefly review the fundamental characteristics of an IT project, and highlight the sorts of risks that continue to result in their lack of success or total failure.

Definition:

· is set up to produce a product that conforms with a specification.

Characteristics:

· is set up to achieve a specified objectives - this is defined in the Project Brief (overall objectives) and the User Requirements Specification (detailed requirements);

· difference between a “project” and a “process”; a process is set up to produce something that is not unique and is a repetition of something that has been produced before;

· Projects normally have limited resources allocated to them;

· requirements, and hence specifications, have a tendency to grow as the project progresses;

· has a start and a clearly defined end (projects don’t go on for ever) - a project is clearly a temporary environment;

· IT projects often call for a wide range of business and technical skills such a project managers; system analysts; applications and systems programmers; procurement and contract specialists; trainers, etc;

· these skills might only be required at certain points in the project, not throughout.

Slide 2/18: project derivation

This slide illustrates the relationship (that ought to exist!) between an organisation’s business needs, and its programme of IT projects.

 IT projects arise in three different ways:-

- as part of a “portfolio” of projects that are required to implement an organisation’s IT

Strategy;

- as part of a portfolio of projects that are required to implement a major project (generally referred to as a “programme”);

- as an individual project that arises from a particular business need.

An organisation’s Corporate (or Business) Plan defines its long term aims and objectives. In all cases there should be a demonstrable link between an IT project and the Corporate Plan.

If there is no discernible link - in other words, there is no Business Case - the real worth of the project to the business must be questionable.

The aim of an IT project is sometimes nothing more than to allow the Head of the IT Department to keep pace with current technical fashion. Besides placing business activities at risk - as does any programme of change - such projects achieve little or nothing of real value to the business and might represent a significant net cost.

To be justifiable, an IT project must help to satisfy a demonstrable business need - this link is shown on the slide and should be pointed out to the delegates.

Slide 2/19: project integrities

This slide discusses the three essential ingredients of a successful project.

To be successful, a project must deliver a product (e.g. a new computer system) which:-

benefits the business:

· as discussed on the previous slide, if the project does not bring some demonstrable (i.e. it can be “demonstrated”) benefit to the business, then its justification is questionable.

is accepted by the users:

lecturer - “accepted” is used here in the sense of “being welcome”, “user friendly”, “approved of”, or “liked”, rather than in the sense of “having satisfied the users’ stated requirements during acceptance testing”;

· the new system’s developers are unlikely to be the same group of people as those who will eventually use it to satisfy business needs - the “end users”;

· although a new system may meet its end users’ stated needs as perceived by the developers, this is no guarantee that in live operation it will prove to be what the end users expected;

· for example, the new system may be over-complicated to operate, or be incapable of being expanded or enhanced;

· systems that are not accepted by their end users are unlikely to achieve the benefits that were forecast in the business case, and are sometimes quickly abandoned;

is technically sound:

· failure to meet technical standards might result in problems in exchanging data with other systems;

· poor responsiveness can result in failure to process the workload, and frustrated end users;

· non-standard systems require ‘out of the ordinary’ skills (e.g. knowledge of an unusual operating system and/or programming language) and components, and are therefore generally more expensive to maintain.

 Slides 2/ 20: common project problems

This slide summarises the types of problems than often impact on government sector IT projects, and which can result in systems which fail to realise their predicted benefits or which are abandoned during or shortly after development.

Little top management involvement:

· failure to provide clear project objectives;

· failure to monitor progress against targets as development progresses.

Project spans operational boundaries:

· the project results in a system than will be used by more than one management group;

· this results in arguments over who will provide what level of resources to the project and different levels of co-operation with the project team.

Inexperienced Project Manager:

· insufficient understanding of project management techniques; and of understanding, anticipating and managing project risks.

Pressure on team for non-project work:

· project team members are continually being given tasks by their normal line management, with the result that inadequate attention is devoted to the project.

Fluid specification:

· the user requirement, and hence the specification, is continually being changed resulting in continual re-design, re-development and re-testing;

· this has obvious impacts on project costs and deadlines, and also on project team morale.

Failure to control costs:

· failure to monitor and attribute project costs, and to re-assess the Business Case to confirm that the project remains viable.

High staff turnover - no continuity:

· self explanatory.

Trying to solve too many problems

· trying to solve too many problems with one project

· a programme may be more appropriate

Slide 2/21: and the consequences?

This slide lists some of the consequences that can - and often do - stem from unsuccessful IT projects.

 The system might............

never be delivered:

· although an abandoned IT project is often a mark of project management failure, it can sometimes be regarded as evidence of sound management;

· an IT project might need to be abandoned for reasons that are outside the control of the business - for example the business need disappears suddenly and unexpectedly;

· failure occurs where management fail to recognise that the business need has changed or disappeared, and the project extends past the time when it should have been abandoned.

be delivered late or exceed budget:

· both are common problems resulting from difficulties in providing realistic estimates;

· sometimes the result of a deliberate strategy to make a project appear more attractive than it really is in order to meet some ‘hidden agenda’.

Lack functionality and/or contain errors:

· can result from inadequate analysis and definition of the user requirement;

· and from an inadequate quality assurance environment;

· both of which might stem from inadequate budget and deadline.

Be unfriendly:

· complicated to operate and use.

Be unreliable in operation:

· high percentage of system downtime.

Be difficult/costly to support and enhance:

· generally stems from failure to implement appropriate standards and methodologies to cover system design and development/procurement;

· the result is that future business needs are not assessed and the system is technically incapable of sustaining a growing workload and/or additional functionality.

Slide 2/22: controlling project risks

This slide summarises the basic management techniques that can be employed to help reduce project risks to acceptable levels. Project auditors will need to consider the extent to which such techniques have been implemented.

Allocate roles and responsibilities:

· ensure that everyone on the project team knows exactly what is expected of them.

Establish good communications:

· good interchange of information is essential to ensure that problems, both actual and potential, are promptly recognised so that remedial action can be applied;

· “the problems that hurt are those you don’t know about”.
Reduce project into manageable stages:

· a large task is easier to manage if it is first divided up into a series of smaller tasks (sometimes referred to as “chunking”);

Plan each stage in detail:

· plan to complete tasks in a sensible sequence;

· plans help to provide a succession of targets against which progress can be monitored;

· they also help to identify what resources will be required, for what purpose and when.

Complete one stage before starting the next:

· failure to achieve a stage’s targets might affect the viability of the whole project.

Monitor deliverables, not activities:

· deliverables are more accurate measures of achievement than are activities;

· an activity may consume significant resources without producing anything.

Manage quality:

· products that do not meet their quality criteria will be unfit for their intended purpose;

Manage change:

· some change is inevitable, but excessive change can destroy the project’s business case;

· ensure that changes are cost-justified; reject or postpone those that are not.

Slide 2/23: controlling project risks

This slide continues the actions that management should take to control an IT project.

Frequently:-

review progress against budgets and deadlines:

· projects cannot go on for ever - a stage is reached where the business either requires, or no longer requires, the product;

· a point is also reached at which any potential benefits that the project might deliver will be totally absorbed by development costs;

the Business Case - is the project still viable?

· regularly monitor expenditure against anticipated benefits;

· it is essential to confirm periodically that the project’s business case can be achieved;

quality against stated requirements:

· achievement of the Business Case is also at risk if the products produced by the project are of inadequate quality so as to be unfit for their intended purpose.

Involve the end users throughout:

· the system under development is unlikely to belong to its development team after it enters live use;

· it must therefore meet the needs and ambitions of its eventual owners, the end users;

· it therefore makes sense to involve the end users as closely as possible to help ensure that the system will in fact meet their needs;

· this is not always easy to achieve in practice;

· end user management are often reluctant to release their better quality staff (if in fact any!) to assist the development team;

· they often fail to appreciate that the success of the project depends greatly on their input, and prefer to let the IT department get on with it.

Slide 2/24: some project management truths

This slide contains some adages which, although superficially amusing, are true.

What is not on paper has not been said:

· in order to avoid misunderstandings and denials, record decisions taken at meetings and ensure that all changes are formally authorised by an appropriate person.

The most valuable and least used word in the Project Manager’s vocabulary is “No!”:

· applies in particular to agreeing to unrealistic budgets and deadlines, and accepting changes that run the risk of damaging the project’s viability.

The problems that hurt are those that you don’t know about:

· problems often come to light because of the damage they have already inflicted;

· aim to identify potential and emerging problems early;

· undertake risk assessment at each stage, and manage potential problems before they can do any real damage.

Too many people on a project create more problems than they solve:

· projects require a sensible mix of funding, time and skills;

· throwing resources at a task will inevitably result in waste and exacerbate the problems in building a cohesive team from people with different backgrounds who will only be required to work together for a comparatively short period.

The more ridiculous the deadline, the more it costs to try and meet it:

· this is a reflection on the pressures that are placed on Project Managers to ‘cut corners’ in order to meet unrealistic deadlines;

· favourite activities to cut back on are quality control (inspections and operational testing), training, IT security risk assessment and business continuity planning;

· these invariably prove to be false economies.

Slide 2/25: project initiation

Project initiation is the stage of a project in which the Project Plan is developed and approved by the Project Board or Steering Committee.

 The aim of project initiation is to establish firm management control of the project from the outset. Please see the example of a risk assessment programme in the annex to the corresponding section of the Student Notes. This was developed for use in UK government IT projects.

Review the Business Case:

· it is not unusual for a considerable period to elapse between the Business Case for the project being approved, and the project starting. Therefore, review the Business Case.

Carry out risk assessment:

· part of the strategy for managing problems before they can damage the project;

· identify potential sources of problems, and put controls in place to limit them.

Appoint personnel, and allocate roles and responsibilities:

· make sure that everyone knows what their role in the project is to be, who their line manager will be, and what is expected of them (develop individual job descriptions);

· ensure that team leaders develop work plans for their staff, and keep them up-to-date.

Describe end products and deliverables:

· monitor production of deliverables, not activities - an activity can produce nothing!

· everyone should know what they are expected to produce, and what the quality criteria are to be in order for the product to be acceptable.

Plan activities and allocate resources:

· high level plan for when activities are to take place;

· helps to ensure that resources will be available when needed, and that activities are co-ordinated so that project deliverables arrive in the correct sequence;

Results in a Project Initiation Document (PID):

· may not be known as a PID, but something equivalent to a PID should exist;

· Project Board approval of the PID marks the start of the project.

 Slide 2/26: summary

This slide summarises the main points covered in this session

Feasibility Study:

· aims are to:-

· understand the problem to be solved;

· confirm the problem can be solved, and is worth solving;

· recommend feasible and viable options for its solution;

· activities include:-

· observation and interview;

· analysis and outline design;

· perhaps developing prototypes or a pilot system;

· investment appraisal and reporting.

Feasibility Study Report:

· reviews costs, benefits, risks, strategic fit, etc of different approaches to solving the problem;

· recommends the best way forward;

· provides justification for recommended option.

Initiate the project - establish firm management control at the beginning:

· the preparation that is required to establish a firm management control from the start of the project;

· results in a Project Initiation Document (or something equivalent) which provides the project’s terms of reference, and brings together all other key information that is needed to start the project on a sound basis;

· the PID should include information that answers the questions:-

· why? what? how? who? and when? for the project; and.....

· what? why? and when? for its products.

Slide 2/27: audit considerations

This slide raises some of the questions that the auditor would need to consider at this stage of the life-cycle. A more extensive list of questions is contained in the Student Notes.

Is the project supported by a valid Business Case?:

· is there adequate justification for the project to take place?

· are costs, benefits and risks sensibly and accurately stated?

· is the Business Case up-to-date? How often will it be updated during the project?

· do project budgets and deadlines appear to be achievable?

· has it been authorised by an appropriate level of management?

Have the Project Board (or Steering Committee) established firm control over the project?:

· are the project objectives clearly defined, and is everyone agreed on them?

· is a sensible project organisation in place with effective lines of communications?

· does everyone know what is expected of them?

Have project risks been identified with appropriate solutions?:

· has a risk assessment (see annex to Student Notes) been completed?

· have adequate controls been put in place to manage the identified risks?

Does the Project Initiation Document (or equivalent) address quality control?:

· have responsibilities for undertaking quality control been defined?

· are there appropriate procedures in place to cover:-

· formal inspections of documents (e.g. plans, specifications, designs, manuals);

· operational testing (e.g. to prove system performance, functionality, security);

· the management of changes stemming from re-working.

Are dates for the Project Board to review progress shown in the Project Plan?:

· have dates for Project Board reviews been set?

· is the Project Board provided with effective management information before a review?

· does it include actual costs to date, and re-focused estimates of costs and deadlines?

Session 3: Specification and procurement

Slide 3/1: Introduction

Most IT projects include elements of both internal development and external procurement.

Internal development generally includes the production of:-

- manuals, which set out the manner in which the system is to be operated and

maintained;

- plans, to cover such activities as training, backing up and recovery, and business
continuity; and perhaps.......

- application software, to support the required business processes.

External procurement generally covers the provision, by external suppliers, of:-

- computer hardware and environmental systems;

- computer software - system software and, increasingly, packaged applications;

- consultancy, to provide skills the organisation does not have;

- services, such as maintenance and facilities management.

In both cases the aim is to get what you want and what you bargained for. Failure to do so can result in wasted investment, while failure to meet implementation deadlines can result in undesirable business consequences. Specification is concerned with understanding and stating what is required in a sensible, business-like manner; and where procurement is to be from an external supplier, the legal aspects must also be considered carefully so that all parties to the agreement are clear about their obligations and the organisation is adequately protected from default.

Method

Slide-show and discussion

Exercise

Timing

90 minutes

Equipment required

Whiteboard, Flip chart, and OHP/ or Audio Visual Unit, Tapes, Paste, Staplers

Handouts

Printed copies of the slides for the module.

Printed copies of Exercise 3.1 and Solution(Exercise 3.1)

Printed copies of Handout 3.1. Cut the handout in such a way that each step of the System Procurement Process appears in a small strip of paper. Put all the strips of paper in a small envelope. Make as many sets of envelopes as the number of groups you intend to form in the class.

Slide 3/2: Topics covered

This slide describes the topics that will be covered during this session

Specifying user requirements:

· is about stating what goods and/or services are required to be provided.

Controlling change:

· fluid specifications can result in significant cost and time over-runs;

· change proposals need to be prioritised in order to exclude those that are non-essential.

External procurement - principles:

· describes (in outline) the procedure to follow for procuring computer systems from external suppliers;

· and summarises the legal issues that need to be considered.

Slide 3/3: the system development life: cycle

This slide illustrates the essential elements of the system development life-cycle, and shows the delegates the stage in the life-cycle that is now being discussed. This session covers specification, which in a well managed project is the preliminary to system design and development, and the procurement of goods and services from suppliers that are outside the organisation.

Lecturer - the specification of requirements is covered on the following four slides.

Slide 3/4: user requirements specification

This slide describes the character and use of a User requirements Specification (URS)
Lecturer - this module only covers the specification of ‘user requirements’. A URS is often translated into a number of more detailed technical design documents that development programmers can work from. Specifications of this type are beyond the scope of this course.

‘Specification’ - stating what you want:

· a User Requirements Specification (URS) is a “description of a requirement”;

· it is a document written in non-technical terms;

· it brings together all material on the business functions to be performed by the system.

The URS provides a basis for:

design work:

· technical designers to work on;

· particular design elements should be linked to the corresponding user requirement to:-

· prove that the design is complete;

· indicate exactly how the requirement has been implemented;

suppliers to submit proposals:

· it enables potential suppliers to gauge the extent to which they are able to satisfy the stated requirements;

· allows them to estimate the:-

· cost of the goods and/or services that are required;

· time-scale for their delivery;

· allows suppliers to suggest innovations (new and advantageous ways of doing things);

user acceptance testing:

· user acceptance testing aims to prove that the users’ requirements have in fact been delivered in a satisfactory manner;

· every detailed requirement contained in the URS must be capable of being tested in order to prove that it has been delivered;

· specific acceptance tests therefore need to be developed in parallel with the URS.

Slide 3/5: Consultation

This slide shows emphasises the key role of the system user and demonstrates the wide range of other interests that should be represented on the project team.

Beginning a project implies that there is some business need which requires change. IT systems exist to support a business activity; they exist as a means to a business end. Projects are more likely to succeed if a senior representative from the user community takes ownership of the project. It is fatal to expect IT professionals to drive the project on their own. A technically elegant system is of no use if the user community reject it. The system will need to integrate with other business functions and meet standards in such areas as quality management, security, environment and audit. Many systems fail because users are inadequately trained or trained at the wrong time - trainers should be kept informed of progress and prepared to deliver training just before it can be applied. System development consumes resources and has to compete with competing demands from other business areas; there should be someone from the finance / resource management team represented - both the benefits and the costs will have to managed which means setting out targets at the outset.

Involve the users:

· during its operational life, an application system will belong to its end users, and it will be they who use it to meet its business objectives;

· the users should therefore be closely involved in its specification to help ensure that it will meet their requirements on functionality, performance and ease of use;

Other interested groups include:

· other groups will also have requirements that need to be taken into account in drawing up the URS;

· Computer Operations - technical requirements relating to the processing capacity of the existing infrastructure and the type of operating and database management systems in use;

· Building Service - the new system may bring a requirement for structural changes, and additional cabling and environmental services to be provided;

· Personnel - staff with different skills may need to be hired, while the new system might also result in some existing staff becoming redundant;

· Training - training courses may need to be developed and delivered before the new system goes live. If these cannot be provided in-house they may need to be included in the URS;

· Security - the organisation’s Computer Security Manager will wish to ensure that the new system can be operated so as to conform with the organisation’s IT security policy;

· Legal - the legal department may need to draft the procurement contract and assist in contract negotiations;

· Audit: the new system satisfies the external auditor’s requirements, which are for an adequate financial audit trail; means of selecting and extracting data from the system for processing with PC-based CAATs software; and adequate controls.

Slide 3/6: a good specification

This slide describes the basic characteristics of a good specification. In practice they are not that easy to achieve!

A good specification should be ACCURATE:

Accurate - it means what it says.

Complete - omissions costs time and money to correct. The later they are found, the more severe their impact.

Consistent - there are no conflicting statements.

Unambiguous - it can only have one possible meaning.

Relevant - time is wasted reading superfluous material;

irrelevant material might be misunderstood by the reader to be relevant.

Adequate - should only meet the needs of the business. Unnecessary embellishments add to cost and complexity with no return on investment.

Thorough - the specification is comprehensive; it contains an appropriate level of detail.

Effective - the specification is easy to read and understand. In this form it is easy to confirm that the other aspects of ‘ACCURATE’ are present.

Slide 3/7: computer system specifications

This slide describes the ingredients of a good URS for a computer system.

Should cover:

Required functions (mandatory and optional):

· the specific functions that the system will be required to perform should be stated in detail (an ‘ACCURATE’ manner);

· functions that must be delivered (mandatory) should be clearly distinguished from those that are either highly desirable or desirable;

· the greater the number of mandatory functions, the fewer the number of commercial products that are likely to satisfy the requirement and the greater the development cost.

IT security:

· the automated controls that the system is required to provide.

Documentation:

· details of required user and operational manuals, and help screens.

Training:

· requirement for the supplier to provide training in using and operating the system.

Maintenance:

· requirements for the supplier to maintain the hardware and software in operational condition;

· provide upgrades to the software as they become available;

· provide a help desk service.

Expected performance:

· the responsiveness of the system under full load (time to respond to a key depression);

· the number of transactions the system will process within a given period.

Performance measurement:

· how system performance is to be measured.

Acceptance testing criteria:

· how acceptance testing is to be carried out, by whom and under what conditions;

· the nature of the tests to be performed.

Slide 3/8: controlling change

Late changes to the User Requirements Specification are traditionally a major cause of time and costs over-runs. The more substantial the change, and the later it occur, the greater the impact it will have on the viability of the project. This slide discusses these issues.

“Fluid” specifications are a major cause of cost and time over-runs:

· after development work has commenced changes to requirements and the amount of re-work necessary to make the change becomes increasingly disruptive and expensive to complete;

· late changes can involve re-design, re-development and re-testing;

· they can also affect other deliverables, such as system interfaces, and the training and system implementation plans (lecturer - these are covered in a later session).

Once the URS is agreed aim to “freeze” it:

· IT projects invariably undergo late changes that are essential to the delivery of a useful system;

· but many changes are “nice to have”, but are not essential. They add to cost and cause delay, and also may bring other risks such as increased complexity;

· once the URS has been agreed all further change proposals should be carefully scrutinised.

Estimate the impact of change proposals on project costs, deadline and risks:

· changes that appear to be essential should be examined to determine:-

· the consequences of not accepting the change;

· the amount of re-work that will be required;

· what other impact(s) the change will have on the project;

· the cost, so that their impact on the project’s viability can be established;

· an informed decision can then be taken on whether or not a change is essential.

Non-essential changes should be deferred until after the new system is working:

· prioritise and schedule non-essential changes for later releases of the system.

Version control: Lecturer - “version control” is covered in more detail in a later session.
· changes apply to documents (specifications, designs, manuals, etc) as well as to software;

· changes lead to the creation of different “ versions” of an item;

· to avoid confusion and error, each version must be clearly identifiable.

Slide 3/9: external procurement

This slide continues the theme of stating business requirements, but emphasises the principle that suppliers should be encouraged to innovate in order to use their expertise to obtain good value for money.

Lecturer - the main points to make on this slide are as follows.

The procured system must satisfy the organisation’s business needs. It is also important that it represents good value for money.

Suppliers generally have more experience than buyers in their particular area of the market, and they should be encouraged to use their experience to propose imaginative and inventive solutions that benefit the organisation.

The underlying principle is to state what is required, but to leave it to the supplier to propose the how.

By this means an organisation might obtain a more cost-effective solution to their business needs than anything that they had considered themselves.

However, innovation can bring its own risks - particularly those associated with leading edge technology - and the project team will need to weigh up the advantages and disadvantages of whatever is proposed.

Slide 3/10: stating business requirements

This slide introduces external procurement. External suppliers of computer systems and services are unlikely to know anything about the background to a URS. Additional information is therefore necessary to enable them to assess the most suitable manner in which a URS can be met. This, together with the URS, forms an Operational Requirement.

Describe the:

Organisation’s business:

· the supplier should be aware of how the requirement fits in to the buyer’s business.

Existing system (including deficiencies):

· why the existing system is inadequate, or if the requirement is entirely new.

Objectives of the proposed system:

· what benefits the buyer hopes to derive from the new system that are not there at present.

Hardware needs and characteristics ;

· any constraints imposed by the organisation’s IT strategy or by existing hardware.

Other constraints:

· other constraints that might affect what the supplier proposes to offer;

· e.g. the environment in which the system will operate, the type of accommodation in which it will be installed, the locations of offices that need to be linked together.

Project timetable:

· deadline(s) for delivery of the system and/or services that are being advertised.

Facilities required:

· the User Requirements Specification.

Exercise 3.1: System Procurement Process

Divide the participants into various groups in such a manner that each group has between 4-6 members. Distribute Exercise 3.1 to the participants and ask them to read it carefully. Also distribute one envelope and a flipchart to each group. The groups are requested to discuss about the System Procurement Process and paste the various steps in a chronological order in the flipchart. Ask each group to paste their flipchart in front of the room.

After all the groups have pasted their flipcharts in front of the room, take-up for discussion those steps where there is no unanimity between the groups. Facilitate discussion and request the various groups to explain the logic behind their response. Finally distribute Solution(Exercise 3.1) to all the participants.

Wind up discussion on the System Procurement Process by showing the slide 3/11.

Slide 3/11: the procurement process

This and the following slide summarise the principles of a sound procurement process. It is not uncommon for detailed regulations to apply in the government sector, and delegates will need to ascertain what regulations apply to them.

Lecturer - the Audit Considerations section of the corresponding chapter in the Student Notes contains a more detailed list of questions relating to computer system procurement.
The slide describes the basic steps in the procurement process, which are self explanatory.

The main points to make are the importance of:-

- producing an effective Operational Requirement, as described earlier in this session;

- agreeing in advance the criteria against which proposals are to be evaluated (lecturer
 please see the student notes on evaluation criteria in the section covering Operational
 Requirement).

- obtaining the benefits of competitive tendering;

- short-listing 3 or 4 suppliers and research their proposals thoroughly;

- in addition to supplier demonstrations, try to see the solution that they propose at
 work in other organisations;

- confirm with other customers that the prospective suppliers are reliable.

Slide 3/12: contract negotiation

Having selected a supplier, a contract to cover the exact terms of the procurement will need to be negotiated. Here again it is likely that government organisations will have their own standard conditions of contract, and delegates will need to ascertain what applies to them. This slide only describes the headings that generally apply to contracts for the supply of computer systems.

Payment:

· there are various methods for payment, and what benefits the supplier does not generally benefit the buyer;

· ‘staged’ payments are a compromise in that the supplier obtains some payment for achieving defined milestones (which should not be time-related, but based on measurable achievement), rather than having to await contract completion, while the buyer only pays for progress against objectives;

· however, deferred payment methods are likely to be more expensive than quick settlements.

Latent defects/retention of payment:

· latent defects are those that are not immediately apparent - they remain hidden;

· an example is a computer system that contains errors that are not revealed during testing; or which carries the workload satisfactorily when under test but not under live conditions; or where mechanical or electrical components prove unreliable;

· an element of payment might therefore be retained for a stated period as a safeguard.

Confidentiality of information:

· binds the supplier to keeping secret any confidential information about the buyer that is obtained as a result of contract negotiations.

Intellectual property rights ;

· these relate to ownership of, and hence the right to use without permission, software and its accompanying documentation, data, and manuals;

· must indemnify the buyer against damages for the use of intellectual property which have not been properly licensed by the supplier.

Escrow agreements:

· cover the deposit of the software source code with a mutually trusted agent for safekeeping;

· licensees will have rights to use it in the event of liquidation of the supplier or failure to provide adequate support.

Whole life requirements:

· requirements that will apply to the product throughout its operational life;

· e.g. a commitment to maintain an application so that it will continue to operate under a particular computer manufacturer’s operating system.

Warranties on performance:

· penalties against the supplier should the system fail to meet defined performance targets;

· targets might include number of simultaneous users; up time percentages; transaction volumes; terminal response time.

Resolution of disputes:

· procedures for the resolution of disputes between buyer and supplier;

· this might involve agreement to accept the decision of a mutually acceptable, independent arbiter.

Slide 3/13: Systems purchased as packages

Software developed by software houses for commonly used applications such as payroll, sales etc are called packages. As the software is developed by the software house, the purchaser has very little control over the development of the package. To compensate for the lack of control on the development of the package, the purchaser will have to institute strong controls.

As the software house will be developing the software for use by number of buyers, the individual buyers will not have any control over the development of the package. Hence, to compensate for the lack of control on development, the individual buyers will have to institute strong controls over:

 Specification of requirement and selection of the package and

 Testing and Implementation of the package

Slide 3/14: Specification and selection of package

This slide discusses about the controls to be instituted for specification and selection of packages

Prepare Statement of Requirement covering:

 Facilities Required and

 Volume of data to be processed

Where a package is purchased from a software house or computer manufacture, it will be necessary to ensure that the package will meet the requirements of the users. This is normally achieved by preparing a statement of requirements describing the facilities required and the volume of data to be processed.

The statement of requirements serves to enable the wishes of several users to be combined in a logical way and reviewed. It can then be used to communicate the requirements to potential suppliers an as a checklist in assessing alternative packages.

The preparation of a statement of requirements is similar to the preparation of a functional specification for an in-house system. The considerations regarding the involvement of all uses departments and the review and approval of the specifications are equivalent. The only significant difference is the usage to which it will be put. Instead of being used as a basis for preparing a technical specification and subsequently programs, the statement of requirements will be used to compare the different available packages and select the most appropriate.

Statement of Requirement to be used as base for assessing alternative packages

The available packages are assessed to determine which is most suitable, taking into account the facilities they provide and the volume of data they are capable of processing. Statement of requirement is used as the base for assessing the alternative packages.

Slide 3/15: Specification and Selection of Packages (Continued)

In this slide the various factors that are to be considered for selecting a package are discussed.

The various factors to be considered for selecting a package are:

 Responsibility for maintenance of the package

The selection of a package must take into consideration the possibility that amendments may have to be made to it in future to correct programme errors or to cater for changing requirements. For example, payroll systems, which are often bought as packages, have to be modified regularly to take account of changes in tax legislation.

The maintenance of a package is normally the responsibility of its suppliers unless the purchaser has made substantial modifications to it. It is necessary to assess the quality of the maintenance service provided. For example, it should normally provide for all future improvements to be made available, for amendments to be made at the users’ request on reasonable terms and for a guarantee of continued support of this nature for the foreseeable future. Furthermore it should allow for the users of the package to make alternative arrangements for maintenance should the suppliers fail to meet their maintenance obligations for any reason, for example if they cease trading.

 Right to source code and technical documentation

It is common for the users to have a right to the source code and technical documentation supporting the package if this happens, so that maintenance can be carried out in-house or by another software company.
 Satisfactory functioning under operating conditions and workloads

Finally, when selecting a package there should be procedures to ensure that it will work satisfactorily under expected operating conditions and workloads. The auditor is principally concerned that the package functions correctly for an accounting and control point of view. However management will wish for reasons of operational efficiency to consider factors such as the incidence of other program errors that may have no accounting implications, the speed and efficiency of processing, and the acceptability of screen or report layouts. The procedures in force to ensure that a package works satisfactorily will normally be a combination of reviewing the experiences of other users of the package and testing the selected package in actual operation at the company’s offices, prior to its acceptance.

Slide 3/16: Testing and Implementation of Packages

The packages can be tested in 2 different ways, by reviewing the experiences of other users of the same package or by independently testing the installed package.

Testing can be in 2 parts:

 A review of the experience of other users of the same package

A review of the experiences of other users of a package is probably the best way in which the prospective purchaser can satisfy himself, prior to signing the contract, that the package will work satisfactory. It involves visiting other users, observing the operation of the package and questioning management and staff about every aspect of the package. These include the facilities which it offers, its freedom from program errors, its speed and efficiency, how easy it is to use and the quality of the support provided by the supplier both during installation and thereafter.

Care should be taken to ensure that the most appropriate users are visited. The amount of useful information that the company can obtain from another user will depend on a number of factors including:

 the extent of the other user’s experience with the package;

 the degree of similarity between the nature and size of the business of the prospective purchaser and the other user;

 Whether the other user uses the package in the same way as intended by the prospective purchaser.

 Independent testing of the installed package by the purchaser

It is always important for the purchaser to carry out his own tests when a package is installed, even if the programs themselves have been extensively tested by other users. At the very least this is necessary to ensure that the installed equipment works properly and that the programs and files have been set up correctly. However when a major system is implemented it is usually desirable to test the programs themselves. The reason for this is that most packages are complex, allowing for different users to use them in different ways, and it is quite likely that no other users are using the package in exactly the same way as is proposed. Furthermore most major packages undergo regular changes which may introduce errors that take time to detect and correct.

The testing of a package by its purchaser corresponds to the user testing and live testing of a system developed in-house. Judgement must be exercised as to the extent of testing required in the light of the assurance gained from other users and the extent to which any program errors would be detected by user controls.

Slide 3/17: Summary

This slide summarises the main topics discussed during this session.

Thoroughly understand users’ needs:

· consult all categories of users - these will include the IT support staff and the auditors;

· errors and omissions become increasingly expensive to fix after the specification has been released;

Write an ACCURATE specification:

· the characteristics of a good specification are summarised by the acronym ACCURATE;

· what are they? (see slide 3/5 notes)

Formally Quality Assure the URS:

· the URS is an important project product;

· a ‘product description’, against which its quality can be checked, should be prepared before it is drawn up.

Restrict and control changes to the URS:

· “fluid” specifications result in cost and time over-runs, and changes to project risk;

· changes to a completed URS should only be accepted if they can be proved to be essential.

Take a methodical approach to procurement:

· a methodical approach to the procurement of goods and services from suppliers helps to ensure that the organisation obtain good value for money at minimum risk;

· formal procedures should provide a logical framework of ‘things to do’, and guidance on how to do them.

Encourage innovation:

· capitalise on suppliers’ experience in order to obtain good value for money;

· specifications should state business requirements (the ‘what’), while giving potential suppliers scope for proposing innovative solutions (the ‘how’).

Pay attention to contract details:

· having selected the supplier, much negotiation can remain in order to secure the most favourable terms of supply;

· pay attention to contract details - failure to take legal advice may prove to be a false economy.

Slide 3/18: audit considerations

This slide summarises the questions that the IT auditor should consider at this point of the life-cycle. A more comprehensive list is contained at the end of the corresponding chapter of the Student Notes.

Does the URS reflect user needs?

· is there adequate evidence to confirm that all categories of stake holders have been asked to define their requirements for the new system?

· does this also include groups who will support the system in some way, rather than use it directly, such as IT Operations and Accommodation Services?

Is the specification comprehensive?

· does it address the headings described in the Student Notes?

· does it look ‘ACCURATE’?

Does the specification reflect audit needs?

· does it state the need for a financial audit trail, data selection and downloading facilities, and provide a detailed requirement for sound internal controls?

Are effective change and version control procedures in place?

· are there procedures for authorising proposed changes to the URS?

· are late changes reviewed to determine their impact on the Business Case and project risk?

· what procedure ensures that all are working from the current version of the URS?

Do procurement procedures help to ensure that the organisation obtain good value for money?

· are procurement procedures documented?

· are procedures adhered to?

· do they ensure genuine competitive tendering, and encourage innovative solutions?

Has sufficient attention been paid to contract conditions?

· does the client have ‘standard conditions of contract’?

· taking account of the guidance in the Student Notes, are they appropriate to computer system procurements?

· are they adhered to?

· is legal advice available?

· is it used?

Session 4: Design and development

Slide 4/1: Introduction

Much design work is likely to have been done during the feasibility study. This will probably need to be embellished further to ensure that it covers everything that is necessary to deliver the users’ detailed requirements (stated in the URS) and any other corporate standards covering IT security, backup and recovery, etc.

When logical design is complete work can start on translating the conceptual system into a real-world, operational system. This is the task that is addressed during system development.

The use of working models, or “prototypes”, is now becoming increasingly common. It can help to speed up the design process and gives the users a ‘feel’ for the new system at the earliest possible stage. Prototyping has been made possible by the significant improvements that have been made in CASE tools in recent years. Prototyping is covered later during the session on Rapid Application Development.

Method

Slide-show and discussion

Timing

90 minutes

Equipment required

Whiteboard

Flipchart

OHP/ or Audio Visual Unit

Handouts

Printed copies of the slides for the module.

Printed copies of Exercise(4.1) and Solution(Exercise 4.1)

Slide 4/2: topics covered

This slide summarises the main topics to be covered during this session.

Design and development:

· looks back very briefly at the aims of logical design (already covered during Feasibility Study and also in IT Methods module);

· discussed the sorts of activities that are undertaken during the physical design stage.

Configuration management:

· a very important management discipline, for controlling the various products (known as “configuration items” or “C.I.s”) that are developed by the project (and also for controlling C.I.s in operational systems).

Version control:

· an aspect of configuration management that ensures that different versions of the same CI can easily be distinguished from each other;

· aim is to avoid problems and failures caused by using incompatible, incomplete or outdated C.I.s.

Change management:

· we have already discussed changes to the URS (“errors of concept”);

· as the project progress, other errors will occur that require changes to be made;

· these must be carefully controlled to ensure that they are authorised, necessary and properly applied.

Security during development:

· it is essential to maintain good IT security in the development area;

· the availability of the development environment must be maintained or the project will be delayed;

· project products, such as designs and source code, must be protected from unauthorised change;

· confidential information that is available to the development team must be protected from those who have no need to see it.

Slide 4/3: system design

This slide identifies the features of logical and physical design.

The design process aims to capture the user requirement at a point in time. The user requirement may well change during the development process but the original design documentation will at least form a stable point of reference. In determining the user requirement it is important that a senior user representative is consulted; this may be a key member of the user community or the spokesperson of a committee of users. Whoever is identified as “senior user” must have sufficient status and respect to carry the rest of the users with them when design decisions are made.

Logical design:

· the aim is to design a system that satisfies agreed, decided or accepted user requirements, but one which is free from any limitations imposed by the real world;

· the emphasis during logical design is to produce a precise statement of ‘what’ the physical system is to do, but not ‘how’;

· the resulting design is therefore a “conceptual”, rather than a practical design, because it is free from all physical constraints;

· it is “portable” and therefore applies to any type of software and hardware environment.

Physical design:

· having produced a conceptual design that implements all the users’ stated requirements, the next stage is to produce a real life working system;

· this involves taking account of the hardware, software, telecommunications and data, and the people who will use and maintain the system;

· this is the aim of physical design.

Slide 4/4: Data flow diagram

This slide demonstrates a method of documenting data flows using an inventory system as an example

This level of documentation concentrates on the logical entities involved and the flow of data between them. It does not imply any one way that the data flows should be managed.

This level of diagram is suitable for expressing what the system should do as opposed to how it should be done.

Slide 4/5: physical design

This slide describes the types of activities that are undertaken during physical design, and the types of products that are produced.

Involves detailed design work on:

· during the physical design stage, the logical concept is translated into a real world system;

· physical design takes account of the types of programming languages, operating systems, databases, computer hardware, etc, that will be employed;

· the sorts of products that emerge from physical design will include:-

· system flowcharts - show the interaction between clerical procedures, computer programs, and hardware devices;

· designs for:-

· computer files and databases;

· screen layouts;

· screen menus;

· printed reports;

· specifications for developing interfaces with other systems, plans (e.g. business continuity, testing, implementation) and manuals for the various groups of people who will use or maintain the system.

Slide 4/6: system development

This slide describes some of the products that are generally required to be developed during this stage of the life-cycle.

Documents are developed to support:

building the system - the plan for:

· assembling all the components of the new system - hardware, communications, software, data;

· setting up the system’s variable parameters (“configuring”) that will determine how it will behave when in operational use (e.g. who can access what files and in what mode);

system and user acceptance testing:

· development of plans and data-sets to cover different testing requirements;

· testing needs to prove the:-

· correct functionality of individual software modules (“unit” and “program” testing);

· correct interaction of the suites of programs that make up the system (“link” testing);

· performance of the system under load (“load” and “stress” testing);

· system operates to the end users’ satisfaction (“user acceptance” testing);

· correct operation of computer hardware, communications and environmental equipment;

training:

· products developed under this heading include ‘needs assessments’, plans, and training course material;

system implementation:

· plans to cover how the system is to be brought into live use;

· implementation strategies include ‘big bang’, ‘phased roll out’ (by function and/or location), ‘parallel operation’ (lecturer - implementation is covered later in this module);

· need to cover what will happen if serious unexpected problems are encountered during implementation (“regression plans”);

business continuity:

· plans need to be developed to cover the action that will be taken should a serious failure or disaster occur during the system’s operational life;

Computer programs written and tested:

· software is developed using the chosen programming language and operating system.

Slide 4/7: system development

This slide continues the description of development activities by discussing the types of manuals that are generally necessary, and the need to exercise quality control over developed products.

Lecturer - before delivering this slide, please review the sections that appear in the corresponding chapter of the Student Notes on Quality Control and Quality Reviews.

Manuals are needed to support:

· manuals (or handbooks) state management requirements, provide guidance and describe methods;

· they need to be developed for different uses. For example:-

· student notes and leaders’ guides to support various training courses;

· instructions for operating the supporting the computers and communications networks;

· instructions on how the end users are to use the new system;

· instructions on how to administer system security (e.g. controlling access to functions and data).

Products subjected to quality control (in line with the Project Plan):

· quality is concerned with ensuring that the products (e.g. designs, manuals, computer programs) that are produced by the project are fit for their intended purpose;

· this involves confirming that products conform with the requirements that are stated in their Product Descriptions, which relate to their function, contents, appearance, method of operation, etc;

· the procedures and responsibilities for carrying out quality control should be stated (e.g. in the Project Initiation Document);

· quality control will take the form of formal inspections (of designs and manuals using, for example, the Fagan method - see Student Notes) and various operational tests on computer hardware and software;

· as designs, and later on software, are developed they should be subject to appropriate quality control;

· it is a fact that the sooner that defects are detected, the cheaper they are to fix;

· the results of quality control should be examined to identify any types/categories of defect that arise regularly

· something can then be done to remove the underlying problem(s) and improve the production process.

Slide 4/8: configuration management

During the design and development stages of the life-cycle many products are produced. The project will become increasingly difficult to manage if the Project Manager cannot ascertain their status - for example, is a particular product in design, under development, under test, or being re-worked? Problems are also difficult to fix if the history of a particular product (e.g. what changes have been made to it, by whom and when?), and the identities of any dependent products, are not known. Configuration Management refers to the management of the components that make up a computer system. It is an important discipline.
Configuration is the management of the components that make up a computer system.

Computer systems comprise many components:

· even a moderate sized system comprises thousands of separate components;

· these include:-

· specifications, and logical and physical design documents;

· plans, for example to cover system testing and implementation;

· manuals for various categories of users and technical support staff;

· computer programs and configuration files;

· computer hardware and communications equipment.

Confusion will result if their details cannot be established:

· during the design and development phases of the life-cycle examples of all these components will be produced, often in large quantities;

· the Project Manager must be able to establish quickly and accurately the exact status of any particular project product to enable him to retain control of the project’s progress;

· development team leaders will also need to know of the progress made by their team on achieving particular objectives;

· teams diagnosing the cause of errors will need to refer to the problem history of the components they are testing, and will also need to identify the dependencies between the components they are testing;

· there is therefore a need to record each component’s:-

· status (is it under design, development, test, re-work?);

· inter-relationships - what other components is it linked with, or dependent on?

· change history - what changes have been made to the original design, and why?

· problem history - what previous problems have there been, and what was done to fix them?

· location - where are they?

· ownership - which development team leader owns them?

Slide 4/9: configuration management database

Although it is possible in theory to control a configuration using paper records - for example, a card index - the large number of components and their inter-relationships, and the amount of change that takes place, makes a control by clerical means impractical. Software support is necessary. This may take the form of a PC database package, although there are commercial packages designed specifically for the task.

Until now the term “components” has been used to refer to the items that make up a computer system. In configuration management the term “configuration items”, or “C.I.s” for short, is generally used and will be used for the remainder of this module.

A “configuration management database” is needed to record:

· where “configuration items” (“C.I.s”) are located (physical location or logical address);

· who owns/operates/maintains them;

· their current status (e.g. under design, under development, under test, in live use, being re-worked, archived);

· history of problems and changes (e.g. nature of the problem, what was done to fix it, by whom, when);

· links and dependencies with other C.I.s.

Controlled by the Configuration Manager:

· configuration management is such an important task that it should have a manager;

· in a large project configuration management may be a full time role for a manager and a team, supported by appropriate configuration management software;

· in a small project it will probably be a part time role;

· the Configuration Manager also performs an important control function;.....
· by ensuring that unauthorised changes cannot be made to documents and programs that have passed quality assurance;

· configuration management therefore controls access that the development and test teams have to the libraries that contain completed C.I.s - the “definitive software libraries”.

Slide 4/10: configuration management database

This slide illustrates how a configuration management database might be organised.

A configuration management database should hold details on all the C.I.s to be produced by the project.

There is no standard method for organising a configuration management database, but it is important that whatever method is adopted makes sense and is therefore useful to the project team.

The level of detail also needs to be decided. There is no point is recording configuration items that are never going to be controlled individually - for example, one might record the base unit of a PC, but (unless there was a need to do so) its memory chips, disk units, etc would not be recorded individually.

These generally fall under four general headings which make convenient categories for organising the database.

Hardware will hold details of hardware comments; for example a PC would probably be entered as three separate, but related, C.I.s, these being the screen, keyboard, and processor unit. Each should be described in whatever way makes sense to the project; for example manufacturer, model, processor type, etc, with a history of problem resolution for each component.

Software might be recorded in the manner shown, with project products being increasingly broken down to the smallest C.I. that the Project Manager wishes to control.

Networks might contain details of each communication circuit, the type of circuit (dial up, leased, bandwidth, etc), who the circuit provider is, and the locations that are linked by it, and problem history.

Documentation includes copies of specifications (e.g. the URS), logical and physical designs, manuals, plans, contracts, minutes of project board meetings, etc. Careful thought would need to be given as to how best to relate different categories of documents to each other.

Slide 4/11: configuration management database

This slide and the following slide illustrate how the hardware and communications C.I.s of a computer configuration might be represented in the configuration management database.

This slide illustrates the sorts of C.I.s that could make up a networked systems.

The system comprises two mainframe computers (A1 and B1) that are connected by a Wide Area Network, W.

Each mainframe computer is in turn connected to its own local Ethernet backbone, AL and BL.

Each backbone is in turn connected to a number of Local Area Networks, one for each floor of the building (AF1, AF2, etc, and BF1, BF2, etc).

Each LAN has connected to it a number of computer devices, such as the floor’s server (SF10) and a number of PCs, printers, etc.

Slide 4/12: configuration management database

This slide illustrates how the configuration described on the previous slide might be organised within the configuration management database.

In this example, the configuration has been broken down in terms of its major C.I.s; i.e. the two mainframe computers, the WAN and the two backbone LANs.

Each of these C.I.s can then be analysed further down to a level past which it is unnecessary to exercise discrete control.

The example shows how the floor LAN, BF1, has been developed to show each individual device that is connected to it. This may provide a sufficient level of control, but it would be possible to analyse each of the components further if this was considered useful.

As previously mentioned, PCs could be further divided into screen, base unit and keyboard, etc.

Slide 4/13: version control

As changes are implemented to fix problems, problems can arise if different generations of the same C.I. cannot be distinguished from each other. Being able to distinguish different generations of the same C.I. is referred to as “version” control. Version control is an important aspect of configuration management.

All developers need to work to the same version, not last week’s:

· changes to specifications and designs frequently need to be made to correct errors and omissions, and to implement modifications;

· such changes result in new “versions” of the same configuration item being produced;

· if different versions of a C.I. are not clearly recognisable, the following types of errors and omissions can result:-

· an early version of a specification, that did not contain the latest changes to the user requirement, was used for a procurement - the product procured does not meet the user requirement;

· the version of an application program being tested did not contain the modifications necessary to allow it to run correctly under a new release of the operating system - the results are unpredictable, but could be intermittent malfunctions or failure;

· the program test plan was out of date, and did not incorporate the revised tests necessary to prove that a new program function worked properly - the modification is released without being tested.

Sometimes multiple versions needed for different needs or hardware platforms:

· sometimes different versions of a C.I. are needed to operate in different environments;

· for example, one version of a computer program may be needed to operate:-

· under UNIX, and another version to operate under Windows NT;

· on an IBM PC, and another version to operate on a MAC;

· each can be distinguished from the other by its “version number”.

Must ensure that all components in a “release” are compatible:

· a new version of a complete system is referred to as a new “release” of the system;

· the versions of the C.I.s within the release are recorded, and are tested together to prove that they are compatible (i.e. they will work together properly).

Provides a means of stepping back to a previous known state (“regression”):

· if the new release fails to work properly, knowledge of the versions of the C.I.s that made up the previous release allow it to be re-constructed and re-introduced;;

· reverting to an earlier release is referred to as “regression” or “roll back”.

Slide 4/14: change management

This slide returns to the subject of change management. This has previously been discussed in the context of late changes to the URS which, in general, should be discouraged. But changes arise for other reasons and these have generally to be implemented to remedy the impacts of design and development errors and omissions.

Changes are necessary to:

· fix errors - these can arise during design and development, and are made by analysis and programming staff;

· modify existing functions - to improve operation or to link properly with other C.I.s which have undergone change;

· introduce new functions - which were, perhaps, omitted during design (emphasises the importance of an audit trail to link user requirements with the corresponding design features);

· install new versions of software - external developers (e.g. Microsoft) periodically introduce new versions and releases of their products. These need to be tested to prove that they are compatible with the existing environment (e.g. with the interfaces to other systems);

· alter software configuration files - configuration files control the manner in which both system and applications software behaves. Common examples of a configuration file change is when a new user or a new device (e.g. a printer) is introduced to the system, or the file access permissions of an existing user or application program are altered;

· add/remove hardware and communications C.I.s: new hardware and communications devices need to be introduced to the system in a controlled manner to ensure that their attachment does not interfere with the correct operation of the system, e.g. by over-loading a LAN;

· add/remove devices, such as printers and servers. Such changes will probably also result in changes to job control language and system configuration files.

The addition of any hardware that can be used to intercept and alter data flowing across a network must be carefully controlled in the interests of sound security.

Slide 4/15: effects of changes on system development

This slide illustrates the impacts that changes can have on the system development process. The message here is that as the project progresses, fundamental errors cause an increasing amount of re-work which in turn has an increasing impact on the project’s budget and deadline. This emphasises the importance of checking quality at every stage of development with the aim of detecting errors as soon as they occur and, so far as possible, removing the underlying problem that gave rise to them.

This slide illustrates the stages in the system development life-cycle.

The black arrows on the slide represent the flow of developed products.

The green arrows on the slide represent the flow of re-work that is necessary to implement changes - or to describe it in another way, to bring the quality of the product up to the required level.

The worst case errors are those uncovered in user acceptance testing (at which stage no errors should remain). These might result in changes needing to be made to the:-

· user requirements specification; and.....

· logical and physical designs; and.....

· test plans for all stages, followed by re-testing.

The aim should be to check quality at each stage in order to ensure that the length of the re-work path remains as short as possible.

Slide 4/16: risks associated with change

Changes bring with them their own risks. These are discussed on this slide.

Change impacts not identified:

· unforeseen impacts often result from system changes - a change made to one part of the system can result in a distant, but related, part of the system failing to work properly.

Change are incorrectly specified, designed or programmed:

· changes are really mini development projects in their own right;

· they are just as prone to errors in specification, design and development, and these can result in the change not achieving what is expected of it, or failing altogether.

Incorrect version changed or released ;

· where a number of versions of a C.I. exist, it is not unusual for a change to be applied in error to the wrong version;

· or conversely, for the correct version to be changed, but an incorrect version released.

Change installed in the wrong location:

· this risk applies to distributed systems where the change is installed somewhere where it ought not to have been.

System documentation not updated:

· programmers generally hate updating documentation to reflect system changes. As a result specification and design documents become increasingly out-of-date and unreliable;

· quality control on changes must apply to the documentation as well as to any amended hardware or software C.I.s.

Security risks:

· changes present an opportunity for fraudulent and malicious activities to take place;

· these can take the form of Trojan Horses (unauthorised functions contained within an authorised program), worms and viruses (both the latter can be slipped into a system upgrade);

· changes to the cabling structure can provide an opportunity to insert line monitors.

Cost damages the project’s viability:

· changes have to be paid for and if they are extensive their cost can have a significant impact of the project’s Business Case.

Slide 4/17: impact of control loss

This slide is used to highlight some of the impacts of poor change management.

Unforeseen problems elsewhere

Uncoordinated change can impact on the interfaces between systems. If, for example, the format of the date is changed from DD/MM/YY to DD/MM/YYYY in one system then it is necessary to consider which systems receive date fields from the system that is to change and either change the other systems or build a bridge which converts date fields appropriately.

System malfunction

The system may fail if poor version control leads to different users running different versions of an application. This can be particularly acute in a client server situation where the client application is stored on the local hard disk of PCs. Unless there is central software management it is easy to end up with multiple different versions of the client software within the population of networked PCs.

If there is poor change management and access control then it will be easier for careless or disgruntled employees to bring the system down either by error or design.

Impacts

Even a tiny change to key software or configuration data can bring the whole system down (availability), systematically corrupt databases (modification) or allow the unauthorised to see sensitive data (disclosure).

Slide 4/18: change control

Change management is also an important management discipline that in many ways complements configuration management. It too should be subject to documented procedures, and a senior member of the project team should be allocated the role of Change Manager to take responsibility for the control of change within the project. Whether this is a full time role or not will depend on the scale of the project.

A needs assessment:

· Is this change really necessary? What would the consequences be if we didn’t do it?

· ‘living with the problem’, rather than fixing it, is sometimes the more sensible course of action.

Impacts in other areas:

· copies of Change Proposals should be sent to all development team leaders before they are approved for comment on possible impacts - this is referred to as “impact assessment”;

Costing:

· changes must be paid for and, taking account of the extra cost of changing additional C.I.s (identified by the impact assessment), they can prove expensive;

· for example, connecting additional terminals to a LAN may not be that expensive, but if the LAN has to be upgraded to handle the extra traffic, the cost might become prohibitive.

Assessment of urgency/priority:

· assessing the need to allocate limited project resources to particular tasks is an ongoing problem for the Project Manager that involves many compromises;

· a priority must be allocated to all change proposals so that unimportant changes do not obstruct the progress of those that are important or essential;

· project priorities are continually changing, and this requires an on-going review of the list of out-standing change proposals.

Proper authorisation:

· every attempt must be made to ensure that changes cannot bypass the project’s change management procedures.

Effective separation of roles:

· those who carry out the change should not be the same team as those who test and install it;

Adequate quality control:

· an adequate level of inspection and operational testing before implementation.

Regression plan:

· is there a plan to take us back to where we where if the change doesn’t work?

Slide 4/19: security during development

This slide describes the IT security risks that apply to the system development environment.

IT security risks during development:

Errors:

· untested or incomplete items are added to the definitive software library;

· this increases the risk of errors going undetected until a late stage of development, or even live operation, when they result in greater disruption and are more expensive to fix.

Failures:

· the development computer system fails, resulting in the project being suspended.

Disaster:

· the development computer is subject to a disaster, resulting in project products being destroyed and work suspended.

Malicious damage:

· project products are damaged or destroyed by virus attack or by direct human action;

· software is modified to include unauthorised functions that allow system security to be bypassed - this might eventually result in fraud and disclosure of sensitive information.

Disclosure of sensitive information:

· it is not unusual for a development team to come in possession of highly sensitive information during the development of a new system;

· this might be commercially sensitive and of value to a competitor, or it might relate to state security.

Slide 4/20: IT security: controls

The types of controls that should be considered for a system development environment do not differ in principle from those that apply to an operational computer system. There is a need for access controls, both physical and logical, effective change and configuration management procedures, and procedures to ensure that the system can be recovered in the event of a failure or disaster.

Protect the development environment:

· control physical access to buildings, rooms and equipment;

· only admit appropriate members of the development team;

· prevent physical access to terminals, magnetic media, designs, and equipment;

· control risks of theft, virus insertion, damage and access to sensitive information.

Control logical access to development environment:

· control those who can log on to the system, the activities that they can perform, and the files that they can access;

· prevents unauthorised alteration or deletion of magnetic files (documents and software);

· log the activities of all computer users, and make personnel individually accountable for their actions when they are logged on to the system.

Change and configuration management:

· really an aspect of logical access control;

· helps to ensure that:-

· unauthorised changes (both well meaning and malicious) cannot be made to C.I.s that have passed quality control; and.....

· as a management function, helps to ensure the speedy resolution of problems.

Backup:

· back up computer files - both project products and the development computer’s software and configuration files;

· ensure that copies of the backup are stored remotely, and that the ability of the system to be recovered from backups has been tested and works.

Workable continuity plan:

· if the development environment exists in a dedicated computer, an appropriate continuity plan will be necessary;

· the type of plan will be dictated by the project’s latest implementation deadline.

Exercise 4.1: Summary

Divide the participants into groups to ensure 4-6 members in each group. Distribute Exercise 4.1 to the participants. Ask them to read the exercise individually and then discuss it with other members in their group. The groups are required to identify the various tasks in the system development stage like configuration management, version control etc., with which the activities described in the exercise are related to.

After the groups have completed the exercise, take up the first activity described in the exercise and ask the groups to state the task in the system development stage with which it relates. Obtain responses from various groups and facilitate discussion in case of disagreement between the groups. Then move to question number 2. Continue this process till all 11 questions are completed.

Distribute Solution (Exercise 4.1) to the participants.

Side 4/21: Summary

This slide summarises the main points dealt with during this session.

Design - create designs and specifications:

· emphasis is on creating a design that implements the users’ requirements;

· produces a logical or “conceptual” design - free from any physical constraints and therefore portable;

· outputs - logical designs (DFDs, ELHs; LDSs, technical specifications).

Development - build/procure components:

· the aim is to translate the conceptual design into a real world operational system;

· must take account of physical constraints posed by the IT Strategy, hardware, software, people, etc;

· outputs - programs, plans (test, installation, training, continuity, etc), manuals, procured items.

Configuration Management - control over development products (“C.I.s”):

· during design & development, many project products are produced (“configuration items”);

· knowing their exact status, history and relationships is essential to sound project control.

Version control - ensure compatibility and enable regression:

· during development changes take place - these result in different versions of same CI;

· different versions sometimes stated in requirements - e.g. to work on different platforms;

· need to distinguish between different versions of the same CI to avoid incompatibility/error.

Change management - the control of changes:

· risks are that uncontrolled change will damage project viability;

· impacts of unauthorised change - Trojan Horses, malicious damage, virus;

· need to implement sound change control procedures to protect definitive C.I.s.

IT Security - protect confidentiality, integrity and availability of development environment:

· protect development environment from impacts of accidental and ‘deliberate’ error;

· protect sensitive corporate information from disclosure to inappropriate people;

· backup C.I.s, and store copies at a secure remote location;

· need for a continuity plan that is commensurate with project criticality and deadline.

Slide 4/22: audit considerations

This slide describes some of the questions that the auditor might consider at this stage of the development life-cycle. A more extensive list is contained in the corresponding section of the Student Notes.

Project Board monitoring progress?

· risk - that project costs and deadlines run out of control without the Project Board being aware of it;

· impact - the project is not re-scoped, and fails to meet its financial targets and deadlines;

· impact - the project is not abandon, and significant investment is wasted.

Quality control checks carried out in accordance with the Project Plan?

· risk - failure to detect products that are of unacceptable quality;

· impact - the delivered system does not work as expected, and is unacceptable.

C.I.s subject to effective configuration management and version control?

· risk - the status, history and relationships of products cannot be quickly and accurately established;

· impact - it becomes very difficult or impossible to monitor project status effectively;

· impact - problem resolution becomes increasingly difficult;

· risk - that incompatible versions are used to build releases;

· risk - that re-work is carried out on an incorrect version;

· impact - unexpected errors or failures occur resulting in wasted time and increased cost.

Changes to C.I.s subject to effective change management?

· risk - uncontrolled/unauthorised changes to C.I.s take place;

· impact - resources wasted on unjustified change;

· impact - key products delayed by failure to prioritise;

· impact - unexpected problems and failures through lack of testing and regression plan;

· impact - products altered to permit fraud and system abuse to take place.

Adequate security and back-up?

· risk - project is subject to unacceptable delay and/or cost over-runs;

· impact - unauthorised alteration to C.I.s;

· impact - disclosure of sensitive corporate information to inappropriate people;

· impact - system unavailable for development to take place;

· impact - destruction of C.I.s.

Session 5: System building and acceptance testing

Slide 5/1: introduction

The objectives of this stage of the system development life-cycle are to build the environment in which the new system will run, and to ensure that the new system is of acceptable quality. The new system will belong to the end-users. They should therefore be closely involved in these activities - particularly in transferring data from existing systems to the new system, in developing user acceptance testing plans, and in carrying them out - to improve their familiarise with it and to help ensure that it contains no major defects when it enters service.

Method

Slide-show and discussion

Timing

180 minutes

Equipment required

Whiteboard

Flipchart

OHP/ or Audio Visual Unit

Cardboard box for putting responses of participants

Handouts

Printed copies of the slides for the module.

Printed copies of Exercise 5.1 and Solution(Exercise 5.1)

Printed copy of Handout 5.1 for instructor.

Strips of paper (A4 paper cut into 3 parts) – at least 4 strips per participant

Strips of paper containing the responses given in the Handout 5.1

Slide 5/2: topics covered

This slide outlines the topics that will be covered during this session.

Building the system:

· refers to the activity of assembling the C.I.s the system’s operational environment;

· configuring the system for operational use (e.g. introducing users), and loading data.

Data transfer:

· this activity involves loading data from existing sources (manual or computer) completely and accurately;

· posting financial data to the correct account.

Testing - objectives:

· what testing is meant to achieve.

Testing - general requirements:

· what resources are needed to carry out testing properly.

Computer and non-computer based testing:

· discussion of different approaches to testing;

· involves documentary review and various types of operational testing.

Acceptance testing:

· the final stage of formal testing before live operation;

· the users ensure for themselves that the system meets their stated requirements.

Slide 5/3: building the system

This slide describes the sorts of activities that take place during system building.

Installing and acceptance testing equipment:

· most system developments will include some equipment procurement;

· this might include computers, communications equipment, cabling and environmental support;

· when this equipment is delivered it must be assembled and commissioned to prove that it works and conforms with the product description.

Loading and configuring the infrastructure software:

· infrastructure software is that which provides a support environment for application systems;

· e.g. operating system, database management system, transaction processing system, security system (e.g. RACF), job schedulers, job accounting system, communications software;

· it has to be loaded and set up to create a suitable processing environment;

· configuration involves providing the infrastructure software with information about hardware devices, communications links, processes to be run, and about users (e.g. their resource access permissions), etc;

ditto the applications software:

· individual applications also have to be configured; e.g. to define what data processing permissions particular individuals and groups are to have within the application system.

Creating files and databases:

· files have to be allocated to particular hardware devices, and the file structure defined.

Loading the data:

· finally, initial data values, such as opening balances, have to be created, and any standing (e.g. the chart of accounts) and historic data (e.g. history of customer orders) transferred to the new system from existing manual and computer systems.

Slide 5/4: data transfer: objectives

Data transfer can prove to be technically demanding and time consuming task, particularly where data is being transferred from a manual system. It is not unusual to find that little allowance is made for the difficulties that are involved. When the data is of a financial nature, the auditor will need to see evidence that the opening balances are correctly stated, and that the financial audit trail is complete. If a system is new there may be no need to transfer old data.

If the system under development relates to a process that has not been computerised before then there may be no data that needs to be transferred; the data for the application will have to be built from scratch. In most cases data will need to be transferred from existing computer systems accurately and completely.

To transfer relevant data to the new system:

accurately:

· the data is relevant and not, for example, out of date (i.e. it has been superceded);

· the content of the data is a true facsimile of that in the existing system;

completely:

· all the relevant data is transferred - there is no extraneous data and nothing is missing;

correctly classified:

· the way in which the data is classified can relate to account codes, stock item numbers, parts and catalogue numbers, individuals’ payroll numbers, etc

· correct classification can be a particularly difficult objective to achieve where classifications have been altered. It involves determining how an existing classification translates to the new system, and this may require some judgement;

in time:

· has been accomplished within the deadline;

to preserve the audit trail:

· it may be necessary to track back from a summarised item in the new system (e.g. an account balance) to the individuals items that it comprises; and vice versa;

· if only summarised items are transferred to the new system, there may be a need to preserve parts of the old system for a period of time to enable such transaction analysis to take place (e.g. in connection with the certification of the accounts).

Slide 5/5: data transfer: potential problems

This slide describes the types of problems that need to be considered when planning for the transfer of data between two systems.

The nature of the data that needs to be transferred will depend on the type of system being introduced. Changing from one word processor to another can be particularly trying as the software to convert from one format to another is rarely perfect so converted documents may look different or even lose content after conversion.

Size of the task:

· number of systems/data formats involved, and the number of records to be transferred;

· can range from accounting balances to be carried forward, to systems that involve the transfer of large volumes of historical data - for example, personnel and pensions systems.

Incompatible systems:

· differences in the way old and new computer systems store data are such that software needs to be developed to convert the data from the old format to the new.

Poor quality data:

· the data in the old system is known to be unreliable. To avoid perpetuation poor quality data;

· preliminary work is necessary correct errors and inconsistencies before data transfer.

Ensuring complete and accurate transfer:

· requires procedures to be drawn up, and roles and responsibilities to be defined.

Different chart of accounts:

· affects financial systems, where the introduction of a new system provides the accountants with an opportunity to modify the organisation’s existing accounting structure;

· result is that a conversion table needs to be designed to translate existing account codes into those that will operate on the new system.

Maintaining an audit trail:

· applies to situations where only summarised records (e.g. account balances) are transferred to the new system;

· it may be necessary to track between summarised records and the underlying transaction detail that has been archived by the old system, and vice versa;

· if this requirements exists, a means of providing a suitable audit trail must be considered.

 Keeping transferred information up-to-date:

· a period of time may elapse between the completion of data transfer the new system being brought into live operational use;

· if transactions continue to arise during this period they will need to be applied to the new system, which will also need to be backed up as part of the business continuity plan.

Slide 5/6: data transfer: approach

The extent of the problems that can arise during data transfer should not be under-estimated. They should be anticipated and planned for in advance.

Consider as a separate project:

· data transfer can be a significant task in its own right; it is probably;

· best carried out by those who own the data and know most about it;

· the extent of these factors may suggest that it would be more effectively controlled as a separate project, with its own objectives, resources and project team.

Define tasks, allocate roles and responsibilities:

· whether or not data transfer is run as a separate project, it should be planned in detail to help ensure the work is completed within budget and deadline, and to acceptable quality;

· activities should therefore be defined and planned, and roles and responsibilities allocated;

· quality control procedures must also be defined.

Test any conversion software to be used:

· where old and new systems are both computerised, much keying in can be saved if the data can be transferred directly between the two system in magnetic format; however

· this approach generally requires software to convert the data from the format in which it is stored in the old system to a format that is acceptable to the new system;

· such software must be tested to confirm that it does what is expected of it before it is used.

Identify and clear defects in existing data:

· if the data in the existing system is known to be of poor quality, it is worth spending time “cleaning” it in order to avoid carrying existing problems into the new system;

· use interrogation software (e.g. IDEA) to identify records that contain missing information, and data that is not feasible;

· providing that they have been tested satisfactorily, the new system’s input validation routines might also be used to reject input that contains anomalies.

Ensure that:

· other data transfer tasks that need to be planned and allocated include:-

· keeping transferred data up-to-date before the new system goes live;

· ensuring that the new system is adequately backed up as data is transferred to it;

· ensuring that data archived under the old system remains accessible.

Slide 5/7: data transfer: controls

Data is prone to the same risks during the data transfer process as it is during live operation. These include human error, system malfunction, computer breakdown/disaster, and deliberate system misuse. The controls that apply during live operation must therefore apply during data transfer.

Establish sound data access controls:

· risk - unauthorised access to data;

· impact - fraud, malicious damage/destruction, unauthorised disclosure of sensitive data;

· controls - restrict and monitor physical access to equipment and data files; restrict and monitor logical access (unique user I.D.s, sound password management, access control profiles, activity logging).

Separation of roles:

· risk - undetected error; data modification;

· impact - unreliable data; fraud; malicious damage;

· controls - data transfer, quality control and change control roles allocated to separate individuals.

Batch controls transfers:

· risk - data conversion error; data modification; incomplete data transfer;

· impact - error, fraud, malicious damage;

· controls - consider control over serial numbers, record counts, financial values, hash totals.

Use new system’s validation checks:

· providing that they have been tested and found reliable, the new system’s input validation controls (these are configurable checks carried out by the software during data input) can provide a useful means of detecting items that contain range and feasibility errors.

Reconcile converted data with source:

· aim is to prove completeness and accuracy of the transfer;

· account balances in the new system reconciled with corresponding balances in the old - but may prove difficult to achieve in cases where the two charts of accounts differ significantly;

· where detailed records are transferred - e.g. customer account history - check a sample of records back to source - particularly important where data has been keyed in manually.

Slide 5/8: testing

This slide describes the principle underlying testing. The main thrust of testing is to find faults, rather than to prove that it works. Tests that are aimed at the latter may fail to uncover instances in which the system acts in an undesirable way. Consider, for example, the “year 2000” problem; although a system may process all two digit dates between 00 and 99 correctly in circumstances where the start date is equal to or less than the end date, how does it behave in circumstances where the start date is greater than the end date? (i.e. after the year 2000). This illustrates the types of problem that can arise where there is a failure to test ‘destructively’. This principle of finding defects applies equally to both manual inspections (of specifications, designs, etc) and to operational testing.

Definition - testing is..........

“the process of exercising the system and

its components with the intention of finding

defects”

Slide 5/9: testing: objectives

The object of finding defects is to provide “assurance” that what has been delivered is of acceptable quality; that is, it is fit for its intended purpose. In reality it is uneconomic (and impossible in all but the smallest system) to test every logical path through a system with every possible combination of data. Testing must therefore provide a balance between risk and cost; it should aim to provide reasonable assurance of acceptable quality, but not complete proof. Where proof is required (“certification”), the process is very expensive and is confined to small, but highly critical, system components. Certification requires the application of mathematical techniques which are not described here.

To provide assurance that quality is acceptable in terms of:

· functionality: that the system performs the specified functions in a satisfactory manner, and nothing else (i.e. there are no undesirable features present in addition to what has been specified);

· responsiveness: the elapsed time between a key depression and the expected system response is acceptable when the system is under full load;

· reliability - three possibilities need to be considered:-

· the total number of service breaks within a defined period;

· the total period that a service is non-operational within an agreed service time (“Downtime”);

· the average elapsed time from the time that a component is fully restored until the next failure of the same component (“Mean Time Between Failures”);

· ease of maintenance: the average elapsed time from occurrence of a failure until its resolution (“Mean Time To Repair). It also applies to the overall cost of maintaining the system in operational use;

· ease of use: described by the colloquial term, “user friendliness”:-

· might be established by a user survey at the post implementation stage of the life-cycle;

· it may also be reflected in the cost, in relation to the throughput of transactions, of operating the system;

· ease of operation: is “user-friendliness” from the computer operations staffs’ point of view.

Lecturer - it might not be possible to establish whether a new system’s reliability, usability, and maintainability are satisfactory during testing, because these characteristics are time-related and defects might not emerge until after a period of operational use. For this reason these characteristics are best included in the post implementation review (PIR is described during a later session). Where systems are externally procured, rather than developed in-house, it is prudent to negotiate a retention clause in the contract to cover “latent” defects (defects that are not visible or apparent when the system is tested) such as these.
Slide 5/10: testing: requirements

This slide describes what is required for effective testing to take place.

Test plan:

· define tests to carry out:

· the Test Plan should, overall, provide assurance that the system has been built according to specification and meets the users’ requirements;

· individual tests should:-

· describe the test objective(s), the expected test results, the staff required to undertake it, and the characteristics of the environment in which it must be performed;

· comprise appropriate test data;

· design test data: data must be designed that will exercise the system’s specified functions to confirm that they work as expected; this includes the system’s ability to manage error situations;

· record and review test results:

· provides evidence that the test has been completed as required

· to consider change requests where test results are unsatisfactory;

· change requests/off specification reports: the Test Plan should specify how errors and omissions should be reported in the:-

· delivery of correctly specified requirements (“change request” - paid for by the supplier);

· User Requirements Specification (“off specification” - paid for by the buyer);

· allocate roles and responsibilities: ensure that test activities are well organised; and that everyone in the test team knows what is expected of them.

User involvement:

· users should be involved in the design of tests and test data because they are likely to know more about the ‘out of the ordinary’ situations that can arise, than are the developers;

· provides familiarity with the new system and helps to promote ‘ownership’.

Operational test environment:

· operational testing is best carried out on a separate computer to reduce the risk of the additional development workload degrading the performance of operational systems failures during testing causing general system failure;

· however, where a separate computer is used to support development, it will need to reflect the operational environment accurately in order to provide a realistic test environment.

Slide 5/11: testing and the SDLC

This slide shows the types of testing that should take place at each stage in the System Development Life Cycle

specification

The users should be led through the design specification and invited to sign off the outline specifications as a record of the target user requirement

design

Analysts have to interpret design specifications to arrive at logical and physical design specifications. It is essential that the user is consulted during this process so that deviations from user requirements can be spotted and put right.

build

Coding should be a fairly mechanical process if the logical and physical design stages were carried out well. Each module will have specified ranges of inputs and a specified repertoir of outputs and behaviour. Build testing simply confirms that a module performs according to specification - this may be carried out by peer review or management review within the development environment. Large development houses have independent quality assurance teams who would undertake this work.

unit

Unit tests a whole function, or unit, and is designed to confirm that the component modules work as intended and that they communicate with each other properly.

link

Link testing is carried out on a group of linked units that together form a particular function. It tests the units and their interfaces.

system

system testing takes the process one stage further by simulating live running of the new application in a development environment; this demonstrates that the application can work with others and the operating system components

installation

Once an application has been thoroughly tested in the development environment it will be installed in the live environment to ensure that it works satisfactorily in conjunction with the live hardware and software.

acceptance

If all is well the owner (senior user) should formally accept the system and sign it off for live usage. If there are operational problems then the whole cycle begins again with user specifications of changes that need to be made before acceptance.

Slide 5/12: non-computer testing

Non-computer testing refers to manual inspections that do not involve the use of a computer. It includes visual examinations of computer equipment that is received from the manufacturer, and also inspections of documents such as plans, specifications and designs.

Need for a documentation standard:

· a documentation standard - the rules and guidelines that apply to the production of documents;

· helps to ensure:-

· quality - documents will be fit for their intended use;

· consistency - all documents developed during a project:-

· contain the correct contents - there are no important omissions;

· have an acceptable look and feel to them - they are “user-friendly”;

Quality control inspections:

· aim to:-

· identify defects;

· achieve full understanding of the requirement;

· inspections can be either:-

· informal reviews, for example by the Team Leader of a team member’s work;

· formal reviews, carried out by teams, that follow a defined method;

· technical inspections of equipment - undertaken by IT technicians;

· formal inspections can be expensive in terms of the number of people and time involved;

· for this reason formal inspections tend to be restricted to critical documents;

· formal inspection involves the document’s author presenting and “walking it through” in detail, with all interested parties present.

Inspections cover:

· documents developed during the project - these will include:-

· plans (e.g. the Project Initiation Document, project stage plans, Test Plan, Implementation Plan);

· specifications and designs (User Requirements Specification; Logical System Design);

· operational and user manuals;

· equipment delivered from suppliers to confirm correct type, quantity, good condition.

Slide 5/13: computer: based testing

The previous slide described approaches to testing (inspections) that do not rely a computer. However, when the stage of development is reached where computer programs are being produced, computer-based testing is necessary to confirm that the software works as expected. That is, it delivers its specified functions, and interconnects with other program suites and systems correctly. Other aspects of the system that require computer-based testing will be to confirm that both infrastructure and application software has been correctly configured, and that the equipment provides acceptable response when under full load.

Lecturer - computer-based testing takes place on a progressively larger scale. It starts with the basic building blocks (objects and modules) and progresses through suites to complete systems. A progressive approach has the advantage of exposing basic errors at an early stage of development when they are more readily (and hence cheaply) resolved.

“Independence” is an important aspect of testing. Not only does it provide a disincentive to insert unauthorised code (Trojan Horses), but it helps to guard against misunderstanding by requiring two people, the developer and the tester, to translate the specification and reach the same understanding.

Unit testing:

· as individual program modules are developed they are tested to confirm that they deliver their specified functions correctly;

· although the specification ought to have been inspected, there remains a risk that it too may contain errors;

· testing at this stage should be carried out, and signed off, by the Team Leader.

Integration testing:

· having established that individual software “building blocks” work as specified, the next stage of testing aims to prove that they inter-connect with each other correctly (“integrate”).

System testing:

· this involves assembling an entire system - this may be the complete system, or a major self-contained part of it;

· for the test to be realistic, the software must be installed in a testing environment that faithfully reproduces the eventual operational environment;

· testing should be designed to expose defects - situations in which the system does not do what is expected and does what it is not supposed to do.

Acceptance testing:

· the final stage of testing is designed to demonstrate to the users that the system works in accordance with their specification.

Slide 5/14: user acceptance testing

This slide refers to the final stage of formal testing, User Acceptance Testing. It can apply to new equipment, but for the purpose of this session we examine acceptance testing of software which is generally of most concern to the auditor.

Builds user familiarisation and confidence:

· the users must be encouraged to participate fully in this stage of testing:-

· in order for them to be confident that the system fully meets their requirements - and to identify areas where it does not, at a time when something might still be done to correct defects (at least those that are significant!);

· because it is a valuable opportunity for them to become familiar with new manual procedures that will be necessary to support the system - new roles and responsibilities, different types of documents, different control procedures, etc.

· users are also better equipped, than are IT development staff, to design tests that will exercise the system in unusual ways, based on their experience of actually doing the work.

· in practice end user management are often unprepared to release sufficient staff from live work to contribute to the acceptance testing process; and

· this results in unexpected operational and quality problems (“it doesn’t work in the way we imagined it would”) following live implementation.

Tests carried out:

· functions: that the functions specified in the User Requirements Specifications have been delivered correctly, and that no undesirable, unspecified functionality appears to exist;

· volume: the system is capable of handling the specified maximum workload (e.g. number of users logged on Vs maximum response time per transaction type; batch process throughput under stated conditions) in an acceptable manner;

· stress: ability of the system to handle a sudden peak in activity without failing, or to determine whether the point at which failure occurs is acceptable;

· security: specified security functions have been delivered and correctly configured. “Penetration” tests aims to find ways of breaking into the system;

· backup and recovery: backup procedures do backup the necessary resources (data, software, system files) and the system can be restored from backup.

When to stop testing:

· an aggressive search for defects uncovers none over all test cycles. But in practice testing is constrained by time and cost;

· a judgement may be necessary on whether any remaining errors are likely to be significant.

Slide 5/15: summary

This slide summarises the main topics discussed during this session.

Data transfer:

· is about:-

· “cleaning up” data - removing errors and omissions in the data contained in the existing system before it is loaded into the new system;

· ensuring that all relevant data is transferred to the new system completely and accurately, and is correctly classified in the new system;

· data transfer can prove to be a significant task in its own right, and should not be under-estimated;

· best done by the users - it is their data, and they are the group most likely to understand it.

Testing only provides assurance:

· too many logical possibilities to test with every possible combination of data;

· proof cannot therefore be obtained, only assurance;

· testing should be designed to expose situations in which the system:-

· does not do what is expected of it; and also

· does what is not expected of it.

Important to:

· plan testing - ensure it is carried out effectively, and within cost and deadline;

· record and analyse the results - evidence of what has been tested, and with what results; underpins remedial action and exposes any emerging trends;

· implement change control: to ensure that changes are properly analysed for their technical impact, cost, and urgency/need, and to reduce the risk of unauthorised change.

Involve the users - its their system!

· the users should confirm that the system meets their requirements, and is what they expected. There may still be opportunities to make late changes;

· valuable opportunity for the users to familiarise themselves with the system before live operation;

· users are also best placed to design tests of the unusual based on their experience of running the business.

Exercise 5.1: Audit checks

The instructor is requested to carefully read the Handout 5.1 and make prior arrangements like making printed slips containing the responses given in the Handout 5.1, plain strips of paper to be given to the participants and a box for collecting the participant’s responses, for conducting the Exercise 5.1.

Distribute Exercise 5.1 and 2 strips of paper to each participant. Ask the participants to read the instructions carefully. Ask them to write at least 2 checks which they as auditors carry out in the system building and acceptance testing stage of the System Development Life Cycle.

Ask the participants to put the strips of paper after writing their responses in the box kept in the front of the class. Divide participants into groups with 4-6 members in each group. Ask each group to pick randomly 10 strips of paper from the box. Request the groups to select the 6 best responses out of the 10. In case the group does not agree with any response written in the paper, they can return the paper to the instructor and take another paper instead. Ask each group to nominate a spokesperson.

Ask each group to read out the 6 best checks identified by them and also responses with they they disagreed and the reason for disagreement.

Distribute Solution (Exercise 5.1) to the participants. Sum up discussions by showing Slide 5/16.

Slide 5/16: Audit considerations

This slide raises some of the questions that the auditor will need to consider at this point in the system development life-cycle. A more extensive list of questions appears at the end of the corresponding section of the Student Notes.

Are there adequate procedures to ensure complete and accurate data transfer?

· risks - unreliable data (incomplete, irrelevant, incorrectly classified, contains detailed errors and omissions);

· impacts - incorrect decision making, financial loss, legal action, loss of goodwill, etc

· controls - data transfer plan, defined roles and responsibilities, control totals over transfers, quality checking after transfer, separation of roles, logical and physical access controls as for the operational environment.

Has a detailed Test Plan been drawn up ?

· risks - incomplete/inadequate/inappropriate testing;

· impact - unacceptable error rates and system failures; live system unable to carry the workload;

· controls - plan activities, allocate roles and responsibilities, describe methods and standards to be applied including those for problem management and change control.

Does it cover both computer and non-computer based testing ?

· non-computer based testing is a useful way of identifying errors and omissions at a stage where they can be fixed relatively cheaply;

· computer-based testing helps to ensure that the system works correctly in its operational environment.

Are individual tests and test data defined ?

· risks - inappropriate tests are applied; tests are not applied; test results are misinterpreted; tests are incorrectly applied;

· impact - wasted time; inadequate testing (as described above)

· controls - individual test objectives described; individual tests, test data and expected results defined.

Is there effective change control ?

· are project change controls procedures applied to errors and omissions uncovered during testing?

Are users closely involved?

· are users closely involved in designing tests and test data, and undertaking acceptance testing?

· is the System Owner required to sign off acceptance testing to signify a satisfactory outcome?

Session 6: System implementation

Slide 6/1: introduction

This session discusses a number of developments that should be completed before the new system is brought into live use. One of these, the development of a Business Continuity Plan, is covered in more detail in the INTOSAI training module on that subject. We also discuss the various approaches to “cut-over” - that is, transferring the workload to the new system.

Method

Slide-show and discussion

Timing

120 minutes

Equipment required

Whiteboard

Flipchart

OHP/ or Audio Visual Unit

Handouts

Printed copies of the slides for the module.

Printed copies of Handouts 6.1,6.2,6.3 and 6.4

One printed copy of the Handout 6.5 for the instructor.

Slide 6/2: Topics covered

This slide summarises the topics that are to be covered during the session.

System ownership and administration:

· the term “ownership” has two slightly different meanings in the context of information systems:-

· in one sense it is about how the users see the system - whether they regard it as their own, or as an unwieldy tool that management have imposed upon them. Close user involvement during system specification, development and testing helps to strengthen this aspect of ownership;

· in another sense - and that dealt with here - it applies to “accountability” , for the system’s on-going usefulness to the organisation.

User group:

· a user group is a useful means of improving the system and of solving system problems.

Training:

· we discuss training needs, timing, and various approaches to training delivery.

Service Level Agreements (“SLAs”):

· technical staff and external suppliers will be involved in maintaining the system and providing various support services, such as a Help Desk and equipment maintenance;

· these services should be covered by “Service Level Agreements” to record the type and quantity of services to be provided, and their cost.

Business Continuity Plan:

· to help ensure that the new system can be restored to operation within an acceptable time-scale should it fall victim to a serious failure or disaster.

Cut-over:

· finally, the new system is brought into live use;

· we discuss various ways of achieving this, and their advantages and disadvantages.

Slide 6/3: the System Owner

Ownership is about “accountability”. If no one person is accountable to top management for maintaining a system in sound working order, the sorts of problems that will inevitably arise are ill-considered and unauthorised changes, untested and undocumented changes, and poor IT security.

Corporate policy: every system should have a recognised “Owner”:

· it is good practice that every system (both applications and infrastructure systems) has a recognised Owner with overall responsibility (and the appropriate authority) for maintaining:-

· information security - the confidentiality, integrity and availability of system data;

· the system’s on-going usefulness to the organisation;

· this should be an aspect of the corporate IT security policy.

Who?:

· needs adequate authority to impose management control while being sufficiently close to system operations to be aware of the risks involved. Suggests a middle ranking manager;

· a policy on system ownership is not an easy subject to decide, particularly where systems are shared by a number of users, but compromise solutions can be reached. In general:-

· end users should “own” applications systems software and data. They use the systems and are best placed to understand what risks need be managed;

· infrastructure systems (shared systems, such as communications networks, mainframe and mini computers, operating system software, etc) are best owned by an appropriate IT manager for much the same reasons;

· the ownership role should be linked to posts, not to individuals - the roles attached to a post do not change as frequently as the individuals who occupy it;

· the system ownership role should be recorded in the job description.

Defined responsibilities include:

· specifying security requirements: the owner should understand what sort of security risks apply to system in question, and be able to specify the security requirements. The Security Manager, in consultation with other technical support staff, should be tasked with satisfying the requirement;

· maintaining operational security: ensuring that day-to-day security tasks (e.g. introducing new users) are allocated to and carried out by appropriately trained staff;

· authorising access: deciding who (individuals and groups) can use the system, and for what purpose;

· authorising change: authorising changes to live databases and to user requirements.

Slide 6/4: the System Administrator

In all but the smallest systems, the System Owner is unlikely to have the time or sufficient detailed technical knowledge to undertake many of the day-to-day tasks associated with this important role. In practice these are delegated to a System Administrator and to other technical support staff. However, management responsibility must remain with the appointed Owner.

Undertakes day-to-day duties allocated by the System Owner:

· the System Owner has many responsibilities, while system administration is often a full time role;

· much of the day-to-day work can be delegated to a suitably trained System Administrator;

· examples are introducing new users, setting their access rights, changing existing access rights, removing redundant user IDs, backing up the system;

Lecturer - a detailed list of system administration tasks is included in the annex to the corresponding section of the Student Notes.
Security risk - wide ranging access to system functions and data:

· the Administrator must access all functions in order to perform administration tasks;

· the Administrator is not therefore subject to a separation of roles within the system, because

· he/she has complete access to system data and to the means to process it; as a result

· there is a high risk of undetected system misuse, particularly in financial systems.

Controlling the System Administrator:

· although a separation of roles cannot readily be imposed within the system (e.g. by restricting the menu options the Administrator can access) non-technical restrictions can be applied:-

· appoint a well established member of staff to the role; but

· use someone who is ignorant of business, as opposed to technical, processes;

· deny access to business areas, stationery, procedure manuals, etc;

· do not permit them to carry out financial reconciliations and manual authorisations (e.g. bank account to cash book; manual purchase order and payment authorisations; supervision; rotation of duties).

Slide 6/5: user groups

A well organised user group can play a valuable role in ensuring that a system continues to meet business needs throughout its operational life.

Represents both user and technical teams:

· a user group needs to meet the needs of all stake holders in the system - both those who use it for business purposes, and those who have to operate and maintain it;

· a mixed group is more likely to provide a balanced view on:-

· how a system might be improved and developed; and

· what is economically and technically feasible to achieve in practice;

· involving all groups of users in collective decisions helps to encourage a sense of “ownership”..

Maintains a dialogue on:

· Training needs - where new versions of a system are to be released;

· Service level delivery - times when support services are needed, and issues regarding the quality of the service provided;

· System problems: -

· ways of getting around bugs in the system until a permanent fix can be provided;

· the type of permanent solution that is required;

· Future enhancements: -

· ways in which the existing system might be improved;

· enhancements that are needed to meet new business requirements;

· Priority of pending change requests: rarely possible to do everything at once. The group can help to prioritise the change requests that are in the queue.

Chaired by System owner:

· a useful forum for the Owner of the system to keep in touch with:-

· evolving user needs;

· problems and the quality of support service being provided;

· IT security problems;

· the types of operational, as opposed to strategic, changes that are needed;

· what the users think of the system.

Slide 6/6: training

Training is necessary to ensure that a new system’s users understand how to use it, not just as an isolated means of processing data, but to integrate it into the business process. This involves understanding roles and responsibilities - who will do what, why and when - and the types of outputs produced, and what they are to be used for in the business context.

Importance often under-estimated:

· managers who are divorced from detailed aspects of business activity fail to appreciate the need to train their staff to use new tools and procedures;

· they assume, sometimes with encouragement from system vendors, that anyone can pick it up;

· training and testing both share the risk of being cut back to bring a late project back on target;

· the risk is that the operational system will:-

· not be securely configured and managed, through ignorance;

· suffer more from user error than should be the case;

· transaction throughput will fall below required levels.

Should recognise different needs of:

· different groups of users and support staff will have different interests in the new system;

· these will need to be reflected in the training programme;

· the groups that may require training will include:-

· everyday users: process transactions, but in connection with different business activities (e.g. purchasing, bill payment, stockholding and asset management) which may require training to be focused on particular areas of need;

· managers and senior managers: how to use the system to obtain information for planning and management (e.g. on budgets and expenditure);

· the Owner and Administrator: system administration activities;

· operations staff: the technical aspects of system support, e.g. schedule batch processes, introduce new devices; re-structure databases, etc

· Help Desk staff: use of diagnostic tools and the help desk support system;

· security staff: how to use the security features offered by the system; e.g. what security messages to log, what they mean, and the use of log analysis software;

· auditors: selecting and downloading data; producing ad hoc reports; system security features.

Slide 6/7: training

This slide describes training strategies, the need to monitor quality, and the importance of timing.

Training strategies:

· training can add considerably to project costs, particularly where the new system is distributed and there are many outstations to include in the programme;

· there will also be an on-going training requirement to cover the needs of new recruits;

· strategies are:-

· classroom: formal courses delivered in a classroom environment by an ‘expert’;

· cascade: staff who have been trained in a classroom environment pass their training on to colleagues. Good for getting the message around quickly, but assumes cascade trainers have understood everything fully, and also have appropriate practical experience;

· computer-based: interactive software that leads the trainee through a question and answer session. Unwieldy for providing explanations on complex subjects;

· video-based: films on ‘how to do it’ - can be very effective if the video is professionally made and is up-to-date. Can be an effective means of adding a practical perspective to classroom training. Training videos can be very expensive.

Important to obtain feedback:

· in common with other project products, training must be of an acceptable quality;

· if the training programme fails to deliver adequately trained people, much the same problems will result as if the software was badly specified or designed; it fails to work properly;

· the training programme should therefore be subject to:-

· inspection - does the material address the right requirements in an acceptable manner?

· operational testing - tests help identify weaknesses in presentation; assessment sheets - to obtain trainees’ opinions on the training?

Need to consolidate before cut-over:

· participation in acceptance testing and parallel running are valuable ways to consolidate classroom and other theoretical training before the new system goes live.

Timing - avoid skills stagnation:

· if training is delivered too far in advance of live implementation, and there is no opportunity to consolidate and/or refresh classroom theory, the trainee may easily forget what has been learned;

· under these circumstance training will have been a waste of money.

Slide 6/8: Service Level Agreements (“SLAs”)

SLAs not only apply to services provided by external suppliers, such as hardware maintenance, but are used increasingly to promote efficiency within an organisation by requiring the consumers to state what their demand for services will be, and to pay for them at an agreed rate. This encourages consumers to be economical in their demands (the greater the consumption the higher the bill), and providers to be efficient in their delivery. An SLA is a written agreement covering the types and levels of services to be provided in return for an agreed scale of charges; and where an external supplier is involved the SLA is also an essential part of the contract.

Formal agreement between users and service providers:

· although an SLA may form part of a contract, it is not a contract in itself;

· it is a written agreement between the consumer of an IT service, and the service provider.

Level of support:

· the SLA will define, among other things:-

· the services provided to an IT consumer might include:-

· operating a computer system, and providing a means of connecting to it;

· maintaining an organisation’s computer equipment;

· providing a Help Desk service to a system’s users;

· other requirements might include:-

· maximum number of service breaks, and the maximum duration of any one break, within a given period - this would influence the provider’s business continuity requirements;

· training services;

· IT security requirements;

· times at which the service will be delivered, and the locations covered by the agreement;

· performance criteria (how frequently, how much, when available, etc); for example the:-

· the maximum response time at the user’s terminal;

· average and maximum times to respond to a hardware breakdown;

· times between which the Help Desk will be manned;

· procedures for changing the SLA (change control);

· arrangements for liaison between the customer and provider, and escalation procedures;

· schedule of charges and penalties, and period of the agreement.

Slide 6/9: contracts and SLAs

This diagram illustrates the relationships that SLAs might cover between the end users of an IT service, and their service providers; and between the service providers and other contractors.

The diagram illustrates the IT service supply requirements that might be covered by SLAs.

The end users of a number of different IT services negotiate SLAs with their IT services department.

This type of SLA typically includes the provision and maintenance of:-

- application systems that satisfy stated user requirements;

- an IT infrastructure (LANs, WANs, servers, printers, etc);

- Help Desk services.

 The IT Services Department would probably need to negotiate sub-contracts with various external firms to cover those services that it cannot provide itself. For example with:-

- a computer manufacturer, or agency, for hardware supply and maintenance;

- a software supplier or specialist developer for the provision and maintenance of
 applications and infrastructure software;

- various building and engineering support firms for the provision and maintenance of the physical environment (e.g. equipment to provide controlled temperature and humidity, power supplies; and security devices to restrict and monitor physical access to the data processing centre);

- a communications firm for provision of data communications circuits and equipment.

Each SLA provides a schedule of the services to be provided that attaches to the respective supply/maintenance contract .

Slide 6/10: business continuity plan

Organisations are becoming increasingly reliant on their IT systems in order to transact business. The aim of a business continuity plan is to provide a strategy for restoring - at least essential systems - to operational use within an acceptable time-scale. A workable continuity plan should exist for the new system by the time that it enters live use.

Object: to recover within an acceptable time-scale:

· the plan should be suitable for recovering key business \ processes within a time-scale that prevents serious business consequences occurring;

· depending on the type of system, business consequences might include:-

· danger to life (e.g. medical support, air traffic control systems);

· financial loss (e.g. sales, cash management, tax collection systems);

· political embarrassment (e.g. social security assessment and payment)

Type of plan covered by business impact:

· the continuity plan must be appropriate to the criticality of the system it covers;

· some systems may need to be recovered within:-

· minutes (e.g. airline reservations);

· days (e.g. fixed asset management);

· the shorter the recovery period the more expensive the plan will be to maintain:-

· mirrored systems - instantaneous;

· hot sites - hours;

· cold sites - 2 or 3 weeks.

Planners need to consider:

· various types of service failures: consider the need to build resilience into the system to withstand serious failures in hardware, software, communications and utilities (electricity, water, gas, etc);

· non-technical disasters: consider the need for backup services to guard against fire, flood, severe weather, industrial action (both internal and external, such as transport strikes), sickness;

· restoring computer services: within the context of system criticality, what steps would be necessary for restoring services should any of these risks occur;

· re-locating users and support staff: systems are no good without anyone to operate them. How would the users be re-connected to the system if it needed to be restored elsewhere?

Lecturer - business continuity is covered in more detail in the INTOSAI module on that subject.
Slide 6/11: cut: over

Cut-over is the process of bringing the new system into operational use. The next five slides consider the different approaches to this task, and the advantages and disadvantages attached to each of them.

Object: limit impact of severe problems following cut-over to live use:

· the cut-over plan should recognise the existence of potentially severe problems that have not been uncovered during testing (testing only provides assurance, not proof);

· these might result in severe operational problems, and even in complete system failure (e.g. case study 2, The London Ambulance Service);

· the cut-over strategy should aim to limit the business consequences of such risks.

Cut-over strategies:

· “big bang”: effectively switching the old system off and the new system on;

· pilot system: implementing a scaled down version of the final system, and studying its impact on a limited area of business activity;

· phased roll-out: implementing the new system in steps, and only moving to next step when that preceding it is working satisfactorily;

· parallel operation: only cutting over to the new system after it has successfully completed a period of parallel operation with the system it is to replace.

Strategies may be combined:

· the above strategies may be combined to further limit implementation risk; e.g. both pilot system and parallel operation can limit the risk inherent in the big bang approach.

Hand outs 6.1-6.4: Cut-over strategies

Divide the participants into 4 groups and give copies of Handout 6.1 to the members of the first group, Handouts 6.2, 6.3 and 6.4 to the members of the second, third and fourth group respectively. Ask each group to read out the handout carefully. Ask the groups to nominate a spokesperson to make a presentation on behalf of the group. The groups may be asked to make a presentation covering the following points:

 Name of the cutover strategy

 Description of the strategy

 Advantages of the strategy and

 Disadvantages of the strategy

 Request the groups to add more points than what is given in the Handout.

Sum up discussion on cutover strategies by quickly showing Slides 6/12 to 6/15.

Slide 6/12: “big bang”

The “big bang” approach to cut-over in to switch the old system off, and the new system on. It is a high risk strategy which, nevertheless, has its attractions.

Most suitable for:

· situations in which there is a high degree of:-

· confidence in the reliability of the system;

· control over the system that enables prompt regression to a previous stable state;

· examples of situations where big bang might be used:-

· transferring existing, stable software to a new hardware platform;

· implementing an upgrade to existing software, with no hardware changes;

· implementing a new well tested, free-standing system (i.e. not distributed);

· implementing new, low risk (minimal business consequences if failure), applications;

· risk of failure is further reduced if a period of parallel operation is possible before cut-over.

Failure could have a severe business impact:

· if a big bang implementation fails, the organisation may be unable to process transactions;

· this possibility should be recognised and risk reduction measures put in place;

· these include:-

· parallel operation before the live workload is transferred to the new system;

· enhanced system monitoring for a period following cut-over to enable prompt detection of problems;

· plan to regress to the previous system for a period following cut-over;

· do not cut-over at a time when much depends on a successful outcome (e.g. a new financial system at the end of the financial year).

If ‘big bang’ is successful, the new system is implemented quickly and cheaply.

Slide 6/13: “pilot system”

A pilot system has more to do with establishing the feasibility of a particular design, than in reducing cut-over risks. However, the end result is that the risk of failure following cut-over to a new system is reduced if a pilot system has already worked successfully. As with all the other approaches to cut-over there are some draw-backs.

Covers a small part of the business:

· a scaled down version of a system is built to cover a:-

· a limited geographical area;

· limited number of business functions.

Identifies problems in full-scale system:

· the aim of building a pilot system is to:-

· establish the feasibility of a particular design(s);

· help to identify cut-over and operational problems.

Reduces the risk of failure:

· because of the restricted area of operation, the business consequences of failure are limited.

If successful, scale up to full size:

· problems uncovered in the pilot system can be addressed in designing and implementing a full-scale system;

· however:-

· problems that are a consequence of size (e.g. ability to handle a high transaction throughput, or to train a large workforce in its use) might not show up in a small-scale design;

· the building, implementing and monitoring a pilot system add significantly to the time taken to implement the full-scale system.

· the approach is most suitable for:-

· large-scale investment where the consequences of failure would be particularly severe;

· situations which depend on an unusual solution, e.g. involving untried technology.

Slide 6/14: “phased roll: out”

Phased roll-out is an approach that involves the gradual introduction of a new system, either by geographic area or by business function. It is inherently a low risk strategy that can be halted while unexpected problems are fixed before they become wide-spread.

Suitable for large, multi-location systems:

· involves gradually phasing in a fully developed system;

· most suitable for multi-locations or multi-function systems.

Gradually phase in different:

· geographical location or groups of users:-

· different regional or international offices;

· different departments within the organisation;

· business function (e.g. general ledger, followed by payments, purchasing, fixed assets, etc);

Problems identified as roll-out progresses:

· design and operational problems can be identified as the roll-out progresses;

· provides an opportunity to halt roll-out while serious problems are fixed;

· impact of failures confined to those areas where conversion has already taken place;

· central support staff:-

· are not immediately inundated with problem reports;

· have an opportunity to familiarise themselves gradually with the new system.

· allows training to be rolled out also, with the advantages that it:-

· is can be delivered shortly ahead of conversion, thus avoiding “stagnation”;

· absorbs lessons and experiences as the roll-out progresses;

· can be reviewed for effectiveness, and changes made, as the roll-out progresses.

But, the business benefits slow to arrive:

· phased roll-out can take a long time (2 years plus for some large UK government systems);

· business benefits are therefore slow to arrive;

· different parts of the business are working to different standards - it can confuse the customer when services that can be delivered at some locations, cannot be delivered at others.

Slide 6/15: “parallel operation”

Parallel operation involves running the old and new systems in parallel, and comparing the results. Cut-over only takes place when the users are confident that the new system is producing the desired results, and even then the old system can be maintained in an operational condition for a period following cut-over to provide a regression path.

Suitable for converting an existing system:

· applicable to converting an existing system (but this can be manual or computerised);

· better for batch systems than on-line systems, where parallel operation might impose an unacceptable loading on the network;

· advantage in situations where acceptance testing has been problematic.

Can provide a high degree of assurance:

· if the outputs produced by the old and new systems are comparable, parallel operations can provide a high degree of assurance that:-

· processes have been correctly specified and designed;

· system performance is acceptable.

Low risk strategy for allowing:

· users to become familiar with the new system in operational conditions, while

· the old system continues to carry the live workload;

· technical support staff can tune the new system for optimum performance under live conditions;

· failures in the new system have no significant impact because the old system is still in use.

But:

· can be very expensive - two systems have to be operated together;

· old and new systems rarely produce exactly comparable outputs, and reconciliations can be difficult, even at a high (summary totals) level;

· unless parallel operation covers periodic processes (e.g. end of year accounts) it provides no assurance on whether these processes have been correctly specified and designed;

· can be very difficult to carry out for on-line systems because of the heavy load on communications network.

Lecturer - parallel processing does not imply that processing has to be carried out contemporaneously. “Retrospective parallel operation” in where the live workload is processes by the new system later; say as overtime working at evenings and weekends.
Slide 6/16: summary

This slide summarises the main topics covered during this session.

Don’t under-estimate the time needed to carry out:

· training, testing and data transfer; each can be a significant project in its own right:-

· training must be of acceptable quality and its delivery timed correctly if it is to be effective;

· acceptance testing should have significant user input - its their system!

· data transfer is best carried out under user control - its their data!

Look forward to operational needs:

· don’t leave important management and administrative tasks until after cut-over;

· confusion and problems will result;

· need to agree at an early stage in the project:-

· on a system ownership policy and responsibilities, if they doesn’t already exist;

· which post-holder will be the Owner of the new system;

· on appointment and training of a System Administrator(s);

· role of a User Group (will need an on-going budget, a secretary, Chairman, etc);

· service level agreements need to be negotiated with support groups and contractors;

· there should be an appropriate (based on criticality) business continuity plan in place at cut-over.

Manage the risks associated with cut-over:

· cut-over needs to be though about early in the project when a suitable strategy can be adopted

· testing only provides an assurance that the system will work properly, not a caste iron guarantee;

· still possible for the system to fail after cut-over, for unanticipated reasons;

· a sensible strategy is needed to prevent severe business consequences if failure occurs;

· strategy depends on the type (free-standing, large distributed, etc) and criticality of system;

· risk management includes:-

· cut-over method - big bang, phased roll-out, parallel operation, etc;

· regression plan - to revert back to previous system if functional/design problems;

· continuity plan - to revert to standby system if hardware failure/disaster.

Slide 6/17: audit considerations

This slide describes some of the questions that the auditor will need to consider at this stage of the system development life-cycle. A more detailed list is contained at the end of the corresponding chapter of the Student Notes.

Are appropriate strategies and agreements in place to cover:

· Training:-

· is the approach likely to be effective? (classroom, cascade, computer-based, etc);

· covers the needs of different groups (managers, users, support staff, etc);

· is the timing too early? (re “stagnation”);

· what provision been made to consolidate training before cut-over? (e.g. parallel running);

· how is the quality of training delivery being assessed? (examinations, opinion polls, etc).

· Cut-over to live use:-

· has adequate testing been undertaken?

· has the Owner accepted (by signing off acceptance testing) the new system?

· have management considered the risks of unanticipated problems and failures occurring?

· have appropriate risk reduction measures been adopted?

· Support for live system:

· System Owner and Administrator(s) appointed and trained;

· system ownership policy in place?

· have management considered the benefits (and costs!) of a User Group?

· SLAs and support contracts negotiated?

· Have appropriate arrangements been made for restoring processing should a severe failure or disaster occur following cut-over? Have these arrangements been tested?

Has a regression plan been drawn up to guard against unforeseen problems?

· will the organisation be able to regress to their previous system in the event of the new system meeting serious problems or failure following cut-over?

· will it be possible to regress for a reasonable period of time (e.g. 1 or 2 weeks?).

Session 7: Post implementation review

Slide 7/1: introduction

Although a Post Implementation Review (“PIR”) is the final stage of the system development process, it should take place well after system implementation when the original project has been wound up.

To help ensure objectivity, the PIR should not be undertaken by the original developers (Internal Audit can make a valuable contribution at this stage). This is because the main thrust of a PIR is to determine whether the new system has - or, indeed, is capable of - delivering the anticipated business benefits; and this can be an uncomfortable process.

 Method

Slide-show and discussion

Timing

60 minutes

Equipment required

Whiteboard

Flipchart

OHP/ or Audio Visual Unit

Handouts

Printed copies of the slides for the module.

Slide 7/2: Topics covered

This slide summarises the topics that are to be covered during the session.

PIR objectives:

· why a PIR is undertaken, and

· what a PIR is intended to achieve.

The review team:

· some thoughts on the make-up of a PIR team.

Review activities:

· the types of activities that are undertaken during a PIR of an IT system.

Review timing:

· deciding when to undertake a PIR.

Slide 7/3: System development Life: Cycle

This slide illustrates, in outline, the system development life-cycle and the stage that we have now reached.

Following system implementation, the new system should be allowed a period of time to ‘bed in’ before a review is carried out to establish exactly what has been achieved, and at what cost.

The results from this work will feed back into the development process in two ways:-

- the new system may require changes - perhaps of a significant nature - and these will need to be analysed, and prioritised against other competing calls on the organisation’s limited resources;

- there are always lessons to be learned from IT projects. These must be identified and fed back into the development process so that other projects may benefit from this. This is part of the quality assurance process.

Slide 7/4: review objectives

This and the following two slides set out the reasons for undertaking a PIR. A PIR aims to establish what a development project has achieved - or to put it another way, exactly what the organisation have got for their money - and what lessons can be learned by the organisation. In practice, a PIR is often regarded as a waste of time and effort; perhaps this is because some of the findings can be embarrassing to those involved in sponsoring and undertaking the original project.

Report on the extent to which:

· business benefits have been delivered:-

· delivered within budget and deadline?

· producing the predicted benefits and savings?

· user expectations met:-

· user-friendly?

· carries the workload?

· produces the required outputs?

· good response time?

· reliable?

· good ergonomics?

· technical requirements met -

· capable of expansion?

· easy to operate and maintain?

· interfaces with other systems?

· low running costs?

Identify the lessons to be learned:

· identify any lessons that can be used to feed back into, and improve, the organisation’s system development process;

· experienced project managers believe that there are always lessons to be learned (‘we wouldn’t do it that way if we did it again’).

Slide 7/5: review objectives

The PIR should also make recommendations regarding the system’s future.

Make recommendations:

· these should relate to the system’s future;

· options might include:-

· continued operation - the system satisfies business needs and user aspirations;

· amendment - the system fails to satisfy business needs, perhaps because others have emerged since it was specified, but would do so if it were changed in some way. This might involve improving performance and/or increasing functionality.

· enhancement - the system should be enhanced to deliver its specified functions more effectively. This might involve, for example, re-designing some screens and adding to or improving the range of reports it produces.

· abandon - the system fails to satisfy business needs, perhaps because:-

· they have altered radically or have disappeared since the system was specified;

· it fails to meet acceptable quality criteria on functionality/performance/reliability.

Slide 7/6: review objectives

This slide illustrates how the PIR fits into the life-cycle.

The PIR should result in a written report for the Information Systems Steering Committee, or whatever top management committee oversees IT investment within the organisation.

It advises them of the outcome of the project, of the lessons that should be fed back into the system development process, and recommends a suitable course of action concerning the future of the new system.

Where additional work is involved, this will need to be assessed for impact, costed and prioritised in line with normal change control procedures.

Slide 7/7: PIR: review team skills

The PIR is really an audit of what has been achieved. In common with any other form of audit it should be carried out independently of those whose activities are being reviewed in order to ensure that a comprehensive and objective report is delivered. The review team is also likely to require a range of skills.

Needs to be objective:

· PIR findings may be uncomfortable, particularly when the project has been unsuccessful;

· a PIR should not therefore be undertaken by the project team - you cannot review your own work thoroughly and objectively;

· an unsuccessful system must not be concealed:-

· an informed decision should be taken on its future (modify, abandon, etc);

· lessons must be identified and fed back into the development process to improve quality;

· therefore, use people who are neither project sponsors nor developers:-

· Internal Audit can play a useful role;

· external consultants may be needed to assist with the technical aspects of evaluation.

Expert support to evaluate technical areas:

· aspects of the PIR that may require expert assistance include:-

· accountancy: reviewing project costs and, for financial systems, advising on how well the system meets business needs;

· information technology: whether, in live operation, the system meets its design targets on responsiveness, reliability and ease of operation;

· computer security: review the computer security incidents that have occurred, and assess the extent to which controls are proving effective;

· ergonomics: assess the extent to which the working environment encourages the effective use and exploitation of IT. Should be assessed in terms of problems with staff recruitment, turnover, attitude and sickness/injury;

· effectiveness of training: whether users feel that the training adequately equips them to do their job. There may be a need for further training to correct deficiencies.

Slide 7/8: PIR: questions to consider

This slide describes the types of questions that might be addressed during a PIR.

Compare the system with the User Requirements Specification:

· functionality?: -
· was the correct functionality specified in the URS, or were there omissions?

· has the specified functionality actually been delivered as expected?

· have business needs changed since the URS was drawn up?

· system response? - are system response times acceptable:-

· for all types of transaction and process?

· when the system is under full load?

· is work throughput acceptable or are there unexpected backlogs?

· reliability? -
· has system reliability (i.e. downtime) been within acceptable limits?

· have failure rates in individual components (e.g. P.C.s) been acceptable?

· review Help Desk statistics on incident reports;

· has the system required frequent updating to fix bugs?

· ease of use:-

· have users/operators had difficulty in using/operating particular aspects of the system?

· have on-line help and manuals been found useful?

· has the Help Desk proved effective in resolving problems on system use?

· ease of maintenance:-

· have technical support staff found fault diagnosis and resolution difficult?

· what do the Mean Time To Repair statistics show?

· how much has been charged to individual system maintenance activities?

Delivery of agreed service levels:

· are the service level targets set out in SLAs being met?

· are the service level targets adequate and meaningful? (can the users understand them?);

· how many disputes have there been between service user and provider? Are any outstanding?

Slide 7/9: PIR: questions to consider

This slides continues the questions started on the previous slide.

Any project management problems?:

· to what were they attributed:-

· over-ambitious task for the people involved?;

· inappropriate project management method, or failure to use it properly?

· over-ambitious go live date?;

· external interference? (e.g. externally imposed changes to budget/deadline);

· lack of user co-operation?

· unclear or changing project objective, etc

Correct development standards used?:

· has the new system proved to be of acceptable quality? (reliability, user-friendliness, response times, maintainability, security, etc)

· are inadequacies due to:-

· the specified development standards were used, but these have proved ineffective?

· incorrect development standards were used?

Findings, conclusions and recommendations in the PIR Report:

· any review should have an objective, a start and an end;

· the end for a PIR is a written report to those who commissioned the review;

· this should set out the review’s terms of reference, and:-

· describe how the review was conducted;

· summarise the review findings;

· explain the conclusions drawn from the findings;

· make appropriate recommendations on the way forward;

· recommendations should be aimed at optimising the organisation’s investment in the new system;

· this might involve continuing as at present; it might also involve:-

· identifying improvements that are necessary to realise the system’s full potential;

· making radical changes to address new requirements, or to correct deficiencies;

· acknowledging that the system fails to meet business needs, and abandon.

Slide 7/10: timing

If a PIR is carried out too soon there is a risk that latent problems will not have time to emerge; or if too late, that valuable lessons that might have been passed on to other projects are delayed.

Too soon:

· problems may not have fully developed: -

· periodic processes (e.g. end of year accounts) might not yet have been used;

· mechanical defects in equipment may not have had time to emerge;

· trends showing poor system reliability may not have had time to develop;

· likewise, trends showing poor service level delivery;

· users not fully conversant with the system:-

· errors reduce as user become more familiar with the system;

· likewise, throughput increases;

· system not yet tuned for performance:- the best settings for the system’s technical parameters have not yet been agreed on (e.g. the optimum mix of processes at any time of day).

Too late:

· failure to remedy problems:-

· inherent specification and design problems result in the system failing to satisfy business needs, resulting in, for example:-

· dissatisfied customers - suffer from system errors and slow turnaround;

· disenchanted users - unfriendly system to use, much complaint from customers;

· manual procedures - used to bypass system defects - slow and costly;

· high running cost - system expensive to use, operate and maintain;

· other projects don’t benefit - from the lessons that can be learned from both successful and unsuccessful projects.

General rule 6-12 months after implementation:

· 6 months for small/medium sized system; 12 months for large system;

· however, may be a need for an immediate review if severe problems soon after cut-over.

Slide 7/11: summary

This slide summarises the main topics covered during this session.

PIR:

· follows the project: generally takes place 6-12 months after cut-over;

· thorough and objective review: aims are to:-

· assess what value the organisation have obtained for their investment;

· identify ways of optimising project benefits;

· bring out the lessons that can be applied to other projects;

· independent of project team:

· unsuccessful systems should not be concealed;

· cannot review your own work objectively;

· need to:-

· learn from mistakes to avoid repetition;

· ensure that other projects benefit from success;

· avoid using project sponsors and team members.

Warning - PIR:

· is often seen as an unnecessary expense;

· sometimes unpopular because of potentially embarrassing findings;

· tendency not to learn from history - the result is that the same mistakes keep being made.

There are always lessons to be learned:

· you’re always wise with hindsight;

· rarely would a project be repeated in exactly the same way if it were to be done again;

· identify both the good points and the bad;

· use the lessons to improve the organisation’s system development process.

Slide 7/12: audit considerations

This slide lists some of the questions that the auditor should consider at this stage. There is a more detailed list in the corresponding chapter of the Student Notes.

Review timing reasonable?:

· is the timing of the review reasonable in relation to the:-

· size of the system?

· history of problems since cut-over?

Do the terms of reference constrain the review?:

· must be alert for the possibility of concealing embarrassing findings

· terms of reference should permit a thorough and objective review of all aspects of the project;

· have any areas been excluded? why?

· has the review been allocated adequate time and resources?

Review team:

· clearly defined management structure?

· technically competent?

· appropriate mix of skills to undertake the work?

· independent of project team and sponsor?

· includes an audit input to assess adequacy of internal controls and system Auditibility?

· a detailed and comprehensive plan on which to base the review?

Report to be delivered to top management?:

· will the report be delivered to a management group who are able to act on its recommendations (e.g. organisation’s IT Steering Committee).

Session 8: Rapid application development

Slide 8/1: introduction

The system development approach described so far in this module is a ‘step-by-step’’ procedure, often referred to as the “waterfall” approach.

Although the waterfall is a logical and well proven approach to system development it does have a number of inherent problems associated with it, not least of which is that it is slow. Rapid Application Development (“RAD”) attempts to overcome this deficiency by relying substantially on controlled trial and error.

RAD is becoming increasingly popular for the development of uncomplicated systems because it provides a quicker development cycle than is possible using the waterfall, and also promises better quality systems. RAD delivers systems quickly by focusing on the delivery of the main business requirements, rather than providing a complete solution. The approach also relies on integrated development teams who are empowered to make significant decisions, extensive use of CASE tools and the development of prototypes.

But in order to obtain the benefits that RAD has to offer in full, it must be managed carefully. RAD can easily result in a system that is functionally rich while seriously lacking in essential non-functional features, such as performance and security.

Method

Slide-show and discussion

Timing

150 minutes

Equipment required

Whiteboard

Flipchart

OHP/ or Audio Visual Unit

Handouts

Printed copies of the slides for the module.

Printed copies of Handout 8.1 to Handout 8.4

Slide 8/2: Topics covered

This slide summarises the topics that are to be covered during the session.

Review - the “waterfall approach”:

· development approach covered so far is step-by-step;

· called the “waterfall” because one step flows into the next.

Waterfall - advantages and disadvantages:

· a review of the waterfall’s strengths and weaknesses; and

· the reason why RAD is becoming increasingly popular.

What is RAD?:

· explanation of what RAD aims to achieve, i.e. speed, and

· how it aims to achieve it.

JAD, CASE and prototyping:

· some of the RAD terminology explained.

RAD software life-cycle:

· a look at how the various stages of a RAD project interact with each other.

Controlling RAD:

· RAD should not be an excuse for anarchy;

· RAD should be controlled with the aim of ensuring that it delivers quality systems.

RAD advantages and disadvantages:

· characteristics of a project for which RAD is a suitable approach, and those for which it is not.

Slide 8/3: the waterfall approach

This slide reviews the steps that comprise the “waterfall” approach.

Development takes place in a number of discrete steps. One step should not start until the previous step has been complete although in practice there is sometimes considerable overlap particularly during design, development and testing where different phases of activity might coexist.

The waterfall attempts to deliver a fully specified solution to a set of user requirements. Thus, much time is spent on analysing and understanding the user requirement, and then designing a solution to it.

The final stage is acceptance testing, which is carried out against a detailed User requirements Specification.

Slide 8/4: waterfall: strengths

This slide considers the strengths that are inherent in the waterfall approach.

The waterfall provides a clear step by step model in which tasks may be estimated and planned relatively easily, and allocated to individuals and groups. This enables good management control.
Good for stable, known requirements:

· if the user requirements can be analysed, a system to meet those requirements can be designed;

· problems occur if the user requirements are vague - they don’t know exactly what they want.

Good for complex computation:

· the rigour involved in structured analysis and design is good for resolving complex needs;

· while the underlying philosophy is to provide a complete solution to the requirements.

Logical top-down approach:

· traditional project management relies on knowing, and being able to describe, the products that are to be produced at each stage of a project, and the sequence of events;

· this fits well with the outputs from traditional structured systems analysis and design methods.

Fast and efficient if end point known:

· a good technique if the end point is well defined, and changes do not occur during the project.

Gives clear measure of progress:

· because project products can be defined in advance, budgets and deadlines can be set for their delivery;

· these can be monitored against the progress achieved to provide sound management control.

Easy to split into contracts:

· the identification of project products enables:-

· the appropriate resource need to be estimated, and

· the work to be allocated as tasks to individuals and groups.

Slide 8/5: waterfall: weaknesses

The waterfall approach also has inherent weaknesses that have resulted in the evolution of RAD.

Adequacy of specification?

· it is difficult to ensure that the User Requirements Specification is complete and accurate, and

· that it actually represents what the users actually want - they often don’t know themselves;

· only at an advanced stage of testing can the users can see a working system and be able to confirm that the Specification is correct.

Changing business needs:

· it is not unusual for requirements to change during development;

· this results in re-specifications, existing designs having to be unravelled and re-designed, and further testing to take place.

High cost of changes:

· changes occur as described above, and also to fix errors;

· the cost of implementing changes increases considerably as the project progresses;

· this is because of the increasing amount of re-work that has to be done.

Skills shortage:

· the skills required to undertake detailed system analysis and design are in short supply.

Too slow:

· the rigor of the waterfall approach make it too slow for many business needs that require a quick solution;

· projects can easily run over a couple of years;

· the result is that the new system meets business requirements that no longer exist in the form originally specified, or at all.

Slide 8/6: high cost of system change

This slide illustrates one of the problems of the waterfall approach, that the later in the process that a change occurs the more expensive it is to implement. The cost of change does not increase in a linear manner with time, but escalates rapidly.

This graph illustrates a failing of the waterfall approach, that it is many times cheaper to include requirements in the original specification, than it is to add them in at a late stage of development.

This is because as a waterfall project progresses, an increasing amount of work is necessary to unravel the original design to accommodate a change, and then to re-develop and re-test.

Slide 8/7: Rapid Application Development

This slide explains what RAD is.

What is RAD -

· a methodology? a technique? a culture? a way of life?

· RAD is characterised by them all:-

· a methodology - RAD should be under-pinned by rules and procedures to ensure that:-

· it does not run out of control; and

· results in systems that represent good value for money;

· a technique - RAD is:-

· not a universal solution to system development needs;

· a technique more suitable to some types of projects than to others:-

· suitable - small, clearly defined group of users who interface the system;

· unsuitable - large distributed and batch-driven systems;

· a culture - RAD is a radical departure from the constraints imposed by the waterfall approach. It is a different culture, and one that exponents of the waterfall may have difficulty accepting.

· a way of life - RAD projects are characterised by:-

· a collaborative, co-operative approach between all stakeholders - this is essential;

· small development teams - typically not more than 10 people;

· heavy emphasis on team building;

· development in “clean rooms”:-

· away from the business (off-site) and free from interruptions;

· good support facilities - flip charts, post-its, computers, lots of coffee;

· the emphasis is on highly focused problem solving.

Slide 8/8: what does RAD involve?

This slide looks a little more closely at what RAD involves - further developed in following slides.

Management commitment:

· must be prepared to commit to significant end-user involvement in the process;

· RAD requires significant investment in Computer Assisted Software Engineering (CASE) tools, and in training in their use.

Small teams and “empowerment”:

· RAD works better with small development teams - typically not more than 10;

· to avoid delay teams are ‘empowered’ to make decisions without referral to senior management.

Minimum requirements, shortest time:

· any development that takes over 6 months is likely to be overtaken by business developments;

· get the essentials up and running as soon as possible;

· recover from slippage be reducing requirements, not by extending deadlines;

· further refinement can be done, if needed, at a later date.

Workshops (“Joint Application Development {JAD}” sessions):

· users and developers work closely together to:-

· define the business requirement:-

· the purpose and scope of the system;

· the prioritisation and time-scale of deliverables;

· review and refine prototypes.

Heavy reliance on automation (“CASE”):

· RAD places heavy reliance on automated software tools (CASE) to speed up development;

· emphasis is on obtaining a “workable”, rather than an “elegant”, technical system; thus

· RAD may inappropriate for systems in which performance is a key requirement;

· CASE tools can significantly reduce the amount of manual effort in design and programming.

Prototyping, iteration and re-use:

· RAD makes extensive use of working models (“prototypes”) to identify user requirements;

· prototypes are then progressively refined until satisfactory - referred to as “iteration” ;

· the process is speeded up by “object re-use” - using prefabricated software building blocks.

Slide 8/9: minimum requirements, shortest time

This slide illustrates one of the fundamental differences between the waterfall and the RAD approach to development - what is often referred to as the “80/20 rule”.

The waterfall - 100% accuracy first time:

· aim is to analyse the users’ requirements in full and deliver a complete solution to them;

· processes of requirements analysis and design are time-consuming;

· 100% solution is rarely achieved in practice because business requirements are:-

· not known in full, or

· are misunderstood.

RAD - the “80/20 rule”:

· experience shows that 80% of the solution is achieved in 20% of the full development time;

· the balance is spent getting from the 80% to the 100% solution;

· RAD applies the principle that nothing is built perfectly first time, and that:-

· 80% of the full solution is adequate for most business needs; and at any rate

· 80% of stated requirements are of low or medium importance;

· time should not be wasted solving all perceived possibilities.

MOSCOW rules apply:

· requirements are therefore prioritised in order of their importance;

· MOSCOW rules then apply;

· MOSCOW is an acronym for:-

· Must have - these are the critical factors that must be delivered;

· Should have - necessary to gain maximum benefit, but inessential;

· Could have - useful, but inessential, features that can be included in resources permit;

· Won’t have - embellishments. Deliver little benefit, but add cost and complexity.

Slide 8/10: evolutionary spiral

the diagram illustrates the iterative nature of a RAD project.

The development team quickly produce an initial prototype with the close cooperation of the user. The team then iterate through successive prototypes refining the user requirement and the product until there is sufficient fit for the user to accept the product or it is decided to abandon the project due to exhaustion of resources allocated.

Time boxing and resource limitations are important as the iterative process is potentially infinite. There has to be some pressure on the user to compromise.

Slide 8/11: “JAD” workshops

Joint Applications Development (“JAD”) workshops are an essential feature of RAD. They provide a forum in which business requirements are identified and prioritised and, as the project progresses, prototypes may be reviewed and refined.

Aim - to reach mutually agreed decisions:

· all stake-holders in the eventual system can meet and agree on needs and priorities;

· and by reviewing prototypes, whether what is proposed meets those needs, or

· needs further refinement.

Properly organised and managed:

· JAD workshops are intended for decision taking and must be managed accordingly:-

· objectives should be defined before the meeting;

· pre-meeting material prepared and circulated;

· roles and responsibilities allocated;

Business-like:

· much depends on the successful outcome of JAD workshops;

· they must therefore be conducted in a business-like manner;

· need correct mix of skills and not more than 12 people;

· focused on achieving their defined objectives;

· a ‘facilitator’ necessary to keep the meeting on course and moving forward;

· written report produced that sets out everything agreed at the meeting;

Users and designers work closely together:

· essential to avoid confrontational atmosphere;

· RAD requires users and developers to collaborate closely throughout the project;

· must be prepared to focus on essentials and to take important decisions.

Analysis, design and initial programming:

· types of activities undertaken in JAD workshops:-

· analysis and definition of business requirement;

· using CASE tools and prototypes to agree on the system’s look and feel;

· reviewing and refining prototypes to get nearer to the true requirement.

Slide 8/12: Computer Assisted Software Engineering: CASE

This slide gives a brief description of CASE tools.

Lecturer - CASE automates different aspects of the development process. If properly used, CASE tools can significantly reduce the time spent on development activities and the demand for high levels of technical skill.

There are different views on what CASE tools actually comprise. Strictly speaking they comprise any form of software that can be used to automate the system development process or parts of it - this includes editors, compilers, project management support software, and configuration management systems. However, CASE is often used to apply to code generators linked to systems analysis and design tools.

For the purpose of this module CASE tools are divided into two groups covering technical and management activities respectively.

Technical activities:

· help to automate the systems analysis and design process (“front-end tools”):-

· address the requirements definition;

· systems analysis and design;

· generate code (“back-end tools”):-

· generate computer code;

· editing, compiling and de-bugging;

· performance analysis.

Management of the development process:

· CASE tools within this category include:-

· project management;

· estimating;

· configuration management;

· change control.

Integrated Program Support Environment (“IPSE”):

· Integrated CASE products permit tools to exchange information (I-CASE);

· some commercial offerings provide a complete, integrated CASE environment built around a central data repository (IPSE).

Slide 8/13: prototyping

This slide explains what is meant by the term “prototyping”.

Prototyping - definition:

Building a physical working model of

the proposed system and using it to

identify weaknesses in our understanding

of the real requirement.

Prototyping - approaches:

· terminology used to describe different types of prototype:-

· Cowboy town: -

· like towns found in spaghetti westerns, the prototype is only a facade;

· screens and reports are developed to agree on system’s ‘look and feel’;

· but there is no linking code, or databases.

· Pilot system:-

· one module of a much larger development is built;

· used to determine how the other modules will appear to the business.

· Slash and burn:-

· a working system is built to determine how it will appear to the users;

· object is to confirm and/or refine their requirements;

· to speed development non-functional requirements are ignored (e.g. security, performance);

· when requirement is agreed the prototype is ‘burned’, work starts on building a properly engineered system.

Slide 8/14: RAD: software life: cycle

This diagram illustrates another difference between RAD and the waterfall, that RAD recognises that work is not necessarily complete and the end of a stage. In fact it is an essential features of RAD that all stages of a development are reversible. This is necessary to allow an iterative and incremental approach to development to take place.

Lecturer - it might be useful at this point to look back to slide 3 which illustrates the waterfall approach. The basic assumption here is that when a stage is complete it should not be necessary to re-visit it. However, when re-work is necessary, return to previously completed work is surrounded by controls which slow development down.

As the arrows on the slide illustrate, backtracking is an inherent feature of RAD. If a stage does not produce the desired result - as demonstrated by a prototype - the position can easily be unwound.

In practice it is sometimes easier to reconstruct than to backtrack. This is made easier by “object re-use” (building software from prefabricated building blocks) and the use of CASE tools.

Slide 8/15: controlling RAD (1)

If the full benefits are to be obtained from RAD (quicker developed, better quality systems) the technique must be controlled. Controls help to ensure that the right things are done, in the right way, in the right sequence and to an appropriate level of quality. First generation RAD gained a poor reputation for producing insecure and badly constructed systems which gained RAD the reputation of being “a hacker’s charter”.

Document a life-cycle for RAD:

· defines what must be done during a RAD development, and the sequence of events;

· in outline, a RAD development might progress through the following steps:-

· feasibility study - is the proposal feasible? is RAD suitable? possible technical solutions? outline time-scale and costs;

· business study - scope and prioritise business functions to be supported, plan prototype deliverables, identify users to collaborate in the development;

· functional model iteration: to demonstrate functional requirements, to identify non-functional requirements (e.g. audit trails, performance, recovery from failure);

· system design and build iteration: to refine the functional prototype to include all the non-functional requirements;

· implementation: to install the system in its working environment, train the users, bring into live operation, and determine further development requirements.

and methods and procedures for:

· project management: still a need for management control, but with differences:-

· in RAD there are no detailed, fixed requirements;

· emphasis moves away from protecting the specification against change, to

· enabling constant change, but aimed at a fixed delivery date for a usable system;

· essential to encourage close user/developer collaboration and avoid confrontation;

· configuration management: necessary to:-

· ensure that all changes are reversible - be able to backtrack to a previous prototype;

· ensure that all developers are working on the correct version, and not a superseded one;

· allow the definition of different bespoke versions for different sites;

· change control:

· necessary to prevent uncontrolled and unauthorised change to approved products.

Slide 8/16: configuration management

This diagram illustrates how configuration management should be used to control prototypes.

Numerous designs and prototypes are built for various purposes during a RAD project. Prototypes tend to fall into four categories:-

- business: to demonstrate the business functions being automated;

- usability: to investigate aspects of the user interface that do not affect functionality;

- performance & capacity: to ensure that the system handles the full workload;

- capability/technique: to trial a particular design approach.

In practice most prototypes will be a combination of the above categories.

It is part of the RAD approach that any change during development is reversible - this implies being able to move easily between different versions of a prototype; for example:-

-
when the users conclude that an earlier prototype was nearer to their requirement

than the current version is, or

-
where a prototype proves to be a development cul-de-sac, and regression to an

earlier version is necessary before development can re-commence.

Sound configuration management enables movement between different versions of prototypes.

The diagram shows the two broad stages of RAD development as it applies to functional prototypes:-

-
a number of functional prototypes are built to agree on the business functions to be

automated ;

-
the agreed functional prototype is then further developed to incorporate the non-

functional features that will be necessary in a working system;

-
as each prototype is completed, it is brought under configuration management

control - or “frozen” - and subsequent changes are applied to copies of it;

-
generally speaking it should be unnecessary to build more than three prototypes at

each stage.

Slide 8/17: controlling RAD: JAD workshops

JAD workshops are decision-taking for a at which all stake-holders in the project should participate. They are an essential ingredient of the “consensus” aspect of RAD, that development proceeds on a mutually acceptable basis. By this means the Project Manager can maintain assurance that the business requirements remain attainable and that the right system is being built to meet them.

· JAD workshops are essential components of a RAD project;

· they provide an opportunity to gather all stake-holders into one forum to reach decisions that are mutually acceptable;

· they offer the advantages of:-

· speed - requirements agreed in days rather than weeks needed by conventional methods;

· ownership - participants more likely to feel they ‘own’ a system that they developed;

· productivity - participants build on each other’s ideas;

· consensus - decisions are more likely to be reached on a mutually acceptable basis;

· overall perspective - all stakeholders are aware of progress and direction.

Manage JAD workshops:

· in order to obtain these benefits JAD workshops must be controlled:-

· rules of procedure: to define how JADs are to be organised and conducted;

· user and developer participation: all stake-holders must play a part;

· pre-define workshop objectives - no meeting is likely to be productive without an agenda;

· allocate roles and responsibilities -

· Project Manager - set agenda & priorities, ensure understanding, resolve conflicts

· Facilitator - independent chairman, gets participants to work as a team

· Participants - represent stakeholders’ interests, must prepare for meeting

· Scribes - records discussions and decisions

· written report on what was agreed: produced by the Scribe.

· usually take place at the following stages:-

· feasibility study - consider feasibility of using RAD, technical approach, estimates, etc;

· business requirements - scope and priority of business functions to be supported, etc;

· gathering functional and non-functional requirements;

· reviewing prototypes and final product review.

Slide 8/18: controlling RAD: management reviews

In common with any other well managed project, senior management - in the form of the Project Board or Steering Committee - should review objectives, and progress against them, from time to time. Periodic reviews strengthens management control by providing an opportunity for senior management to confirm that the project goals remain attainable and that the business case remains viable; and to re-scope or abandon the project if necessary.

Time-boxing:

· a very important management control;

· aims to prevent teams losing their focus on business objectives and running out of control;

· a Time-box:-

· is a specified period of time - it should not exceed 6 weeks;

· sets a date by which a completed business objective must be met;

· it does not set a deadline when a task must be completed.

· a business objective might be:-

· an early version of a system (i.e. prototype);

· a completed part of a system;

· is linked to the business objectives set out in the Statement of Business Requirements;

· at the end of a Time-box the Project Board:-

· review progress: are project goals still attainable? does the Business Case remain viable?

· take forward look to the next iteration:-

· what the next time-box aims to deliver;

· whether it appears achievable - the next time-box might include slippage;

· whether the Business Case is likely to remain viable.

Handout 8.1-8.4: Role Play regarding application of RAD

A role play is to be played to discuss the advantages, disadvantages and suitability of RAD approach to System Development. Identify 3 participants one day before to play the roles of Philip, Suzanne and Andrew. The participants who speak clearly, loudly and who have been taking active interest in the earlier sessions may be identified to play the 3 roles. Distribute the Handout 8.4 (Observers) to all other participants. Request them to carefully observe the role play and particularly focus on the advantages and disadvantages of RAD.

After the participants have finished reading their handouts, announce that 15 minutes are available for the role play. Request the role players to start the play. After the role play is complete, thank the 3 role players for consenting to perform in the role play. Also, thank the observers for taking active interest in the role play.

Summarize the discussions by quickly showing the slides 8/19 to 8/22.

Slide 8/19: RAD: advantages

This slide summarises the main advantages that are inherent in the RAD approach.

User participation/decision making:

· close user involvement in decision making throughout the project;

· helps to strengthen users’ eventual ‘ownership’ of the system - they helped to build it;

· ensures quality:-

· the real user requirements are obtained through building and refining prototypes;

· this helps to ensure that the ‘right system’ is eventually delivered;

Ability to deal with ‘fuzzy’ projects:

· these are projects in which the business requirements are vague or unclear;

· in the Waterfall there are real problems in drawing up a User Requirements Specification;

· but RAD enables users to develop or evolve their needs through prototyping;

Requirements validation:

· prototypes enables users to confirm their requirements as the project progresses;

· “is this what you want?” - “if not, how should we change it?”

Project visibility/user satisfaction:

· the users are able to see their system evolving - through prototypes - very quickly and throughout the project;

· unlike the Waterfall, which might take months or even years to get a workable system into test;

· this enhanced visibility helps to provide customer satisfaction.

Reduces risk:

· time-boxing, coupled with the ability to see working models, helps to confirm:-

· that the business requirements are attainable, and

· that the right system is being built to satisfy them;

· this level of assurance emerges in the Waterfall at a much later stage of development;

· RAD therefore offers the opportunity to re-scope or abandon at a much earlier stage when less money will have been spent.

Slide 8/20: RAD: points that need attention

This slide summarises the problems that can arise with RAD, and that require particular attention.

Superficiality:

· the production of prototypes means users see a working system very quickly;

· considerable pressure can be placed on developers to release it for operational use;

· users fail to appreciate that work still needs to be done to build in non-functional requirements:-

· security;

· audit trails;

· adequate responsiveness and transaction throughput;

· backup and recovery features, etc

· there is therefore a risk that a poorly engineered system will be released into live use;

· this risk is further increased because RAD focuses on getting the correct functionality, and the need for non-functional requirements can be over-looked.

Project control:

· “Snowball” development (a snowball gets bigger, as it rolls down a hill):-

· RAD does not require detailed user requirements, while it lends itself to change;

· as a result, user requirements can increase dramatically as the project progresses;

· results in an over-elaborate system that is expensive to maintain;

· Controlling changes:-

· a great many changes arise during a RAD project, often rapidly;

· care has to be taken to ensure that:-

· they are adequately controlled;

· the change control process does not slow down the project.

Consultant/vendor driven:

· need for RAD experts and CASE tools can result in excessive reliance being placed on contractors and the organisation becoming locked in to one vendor’s CASE products.

Built-in inefficiency:

· automatic code generation tools do not provide efficient systems;

· RAD is not really suitable to projects where system performance is a key issue.

Slide 8/21: unsuitable RAD projects

The following types of situations are unsuitable for RAD.

Requirements have to be fully specified:

· if a detailed specification is needed for approval before development commences;

· for example, in a public procurement project, or in

Safety critical applications:

· need to be fully specified; also

· exhaustive validation and verification make it unsuitable for interactive development.

Real-time applications:

· much of the processing is invisible to the users; and

· tends to be complex in the states that it must handle.

No user participation:

· management unwilling to commit quality user staff to the project;

· will be unable arrive at the real user requirement by iterative development.

No empowerment:

· delays involved in obtaining management approvals will slow the process down;

· under these circumstances RAD offers very limited advantage over the Waterfall.

Lecturer - these are not hard and fast rules; they are merely indicators.

Many applications may appear not to demonstrate the required characteristics. But if the development team is experienced in RAD and there is good management commitment, benefits might still be gained in using the approach, perhaps for a part of the project. RAD could be used, for example, to clarify the business requirements during the feasibility study with the main stage of development being carried out using traditional methods.

Developments in RAD technique (e.g. it has been used in the UK to develop a safety critical system) and in CASE tools are being made all the time.

Slide 8/22: suitable RAD projects

The following are indicators of suitable RAD projects.

Interactive systems:

· where the functionality is clearly visible at the user interface;

· incremental prototyping, with close user involvement to assess the functionality, is possible.

Clearly defined user group:

· danger exists:-

· of driving the development from the wrong viewpoint;

· ignoring important aspects of the application entirely.

Not computationally complex:

· OK if re-using existing, well tried procedures;

· but need for full specification if new procedures are to be developed.

If large, able to be split into smaller functional components:

· OK if it is possible to split into small units, each delivering clearly defined functionality.

Time-constrained:

· there should be a fixed critical end-date by which the project should be completed;

· this provides the essential drive that is necessary to gain the benefit from RAD.

Slide 8/23: summary

This slide summarises the topics covered during this session.

RAD relies on:

· close technical/user co-operation: to:-

· ensure that the right system is developed; and

· avoid delays while decisions are made.

· small development teams: for:-

· quick decision making, and

· good communications.

· CASE - extensive use of automation to speed up design, development and management tasks;

· iteration -the use of prototypes to ‘discover’ the true user requirement by a process of iteration;

· 80/20 rule - not attempting a complete solution, but focusing on the essentials;

· re-use - re-use of prefabricated software building blocks (“objects”) to reduce development time.

Better quality systems at lower cost:

· close user co-operation, automation and iterative development can produce systems that:-

· are delivered when they’re needed, and at lower cost than by traditional methods;

· satisfy business requirements;

A sound development strategy is essential:

· RAD should not become a receipt for anarchy;

· the consistent development of quality systems depend standards being applied;

· there should be a documented life-cycle method for RAD to provide guidance on:-

· the RAD development method;

· project management;

· configuration and change management.

CASE tools improving all the time:

· but unless their use is integrated with the organisation’s RAD development method, and

· they’re used by people who have been trained in their use,

· they will only help build the wrong system more quickly.

Slide 8/24: audit considerations

This slide summarises the questions that the auditor might consider at this stage. A more detailed list of questions is contained at the end of the corresponding chapter of the Student Notes.

Is a RAD life-cycle method in use?:

· is there documented guidance on how RAD projects are to be planned, managed and reviewed?

· does it provide guidance on:-

· when to use RAD, as opposed to other development techniques;

· the stages of a RAD project - when they take place, what they address, how, etc

· prototyping - when, type of prototype, purpose;

· JAD sessions;

· project management, configuration and change management

· does it require management controls over progress? (e.g. time-boxing)

· overall, is the life-cycle method effective in guiding and directing activities?

Does the use of CASE tools integrate with the life cycle method?

· does the life-cycle provide guidance on where CASE tools should be used, and why?

Is there a project Sponsor?

· to commit funds and resources, question, provide business knowledge and political awareness.

Have high level business requirements been defined?

· do all concerned share the same view of the target that they are aiming at?

Are JAD sessions properly managed?

· do JAD sessions take place at appropriate points in the life-cycle? (see notes to slide 16)

· are JAD sessions productive?

· do they provide a reliable record of what was discussed and agreed?

Is time-boxing or a similar management control in place over the project?

· do senior management review progress periodically?

· have they sufficient information to re-scope or abandon the project if necessary?

How are non-functional requirements to be addressed?

· does the life-cycle ensure that security, audit trails, backing up/restoring, performance etc are properly addressed before systems enter live use.

Session 9: Alternative Development Methodologies

Slide 9/1: introduction

In this session, the alternative methodologies for developing computerised system other than ‘Waterfall Approach’ and RAD will be discussed.

Method

Slide-show and discussion

Timing

30 minutes

Equipment required

Whiteboard

Flipchart

OHP/ or Audio Visual Unit

Handouts

Printed copies of the slides for the module.

Slide 9/2: Topics covered

The following development methodologies will be discussed in this session: Data-oriented system development, Object-oriented system development, object-oriented technology, prototyping, re-engineering, reverse engineering and structural analysis

Slide 9/3: Data-oriented System Development

This Slide discusses about data-oriented system development

 Focuses on the need of management and staff to have access to data to facilitate and support decisions
Users need and want information so that they can derive information from it.

 Development of an accessible database of information
Inherent in DOSD systems is the development of an accessible database of information that will provide the basis for ad hoc reporting.

 Does not mean disappearance of operation-level transaction processing systems
The emphasis on data is not to be interpreted as the disappearance of operation-level transaction processing systems, rather it is a recognition that most transaction systems have already been developed and that new systems are now addressing the users need for more information.

Slide 9/4: Object-oriented System Development

This Slide discusses about Object-oriented system development

 Process of solution specification and modeling
Object-oriented system development (OOSD) is the process of solution specification and modelling. The process defines how to implement functionality defined by the analysis.

 Divided into 2 levels:
 Abstract Design (adds solution characteristics to the analysis models)

Abstract design, adds solution characteristics to the analysis models but is still largely independent of development tool specifics

 Physical Design (more detailed and looks into specifics of the development environment)

Physical design, is a more detailed level which looks at the specifics of the development environment and incorporates those features or constraint; into the designs.

Slide 9/5: Object-oriented Technology

This Slide discusses about Object-oriented technology

 Raw data and procedure governing use of data viewed as a single object
Object-oriented technology views the raw data and the procedures governing use of data as a single object.

 Object defined in terms of its characteristics and the procedure governing their use.

An object-oriented approach to data management defines the object in terms of its characteristics (for example, text, graphics, format specifications and printer information) and the procedures governing their use (how those characteristics are used to make a complete document).

 Object then stored as a resource that can be reused.

Slide 9/6: Object-oriented Technology – Advantages and Applications

This Slide discusses about the various advantages of Object-oriented technology and also applications that use it.

 Advantages are
 Manage unrestricted variety of data types

 Means to model complex relationships

 Meet the demands of changing environment

 Increased efficiency due to ability to reuse
 Used in
 Artificial Intelligence

 Computer-Aided Manufacturing and

 Computer-Aided Software Engineering

Slide 9/7: Prototyping

This Slide discusses about prototyping.

Also known as heuristic development
 Process of creating a system through controlled trial and error

 Uses faster development tools such as 4GLs

It is a method, primarily using faster development tools such as 4GLs, that allows a user to see a high level view of the workings of the proposed system within a short period of time.

 Initial emphasis normally on reports and screens.

The initial emphasis during development of the prototype is usually placed on the reports and screens, which are the system aspects most used by the end users. This allows the end user to see a working model of the proposed system within a short time.

Slide 9/8: Approaches to prototyping

This Slide discusses about the approaches to prototyping.

Two approaches are
 Build the model to create the design and then develop processing capabilities

The problem with this approach is that there can be considerable pressure to implement an early prototype. Often, users observing a working model cannot understand why the early prototype has to be refined further. The fact that the prototype has to be expanded to handle transaction volumes, terminal networks, back up and recovery procedures, as well as provide for audit trail and control is not often understood.

 Gradually build the actual system that will operate in production

Gradually build the actual system that will operate in production using a 4GL that has been determined to be appropriate for the system being built.

Slide 9/9: Re-engineering

This Slide discusses about re-engineering.
 Process of updating and existing system by extracting and reusing design and program components
Re-engineering is a process of updating an existing system by extracting and reusing design and program components.

 Used to support major changes
This process is used to support major changes in the way an organization operates. A number of tools are now available to support this.

Slide 9/10: Reverse Engineering

This Slide discusses about reverse-engineering.
 Process of taking apart an application to see how it functions and to use that information to develop a similar system.
Reverse engineering is the process of taking apart an application or a software application or a product, in order to see how it functions and to use that information to develop a similar system.

 Two approaches are:
 Decompiling object code into source code and using it to analyze the program

 Utilizing the reverse-engineered application as a black box and unveiling its functionality using test data

The IS Auditor should be aware of the following risks:

 Software license agreements often contain clauses prohibiting the license from reverse engineering the software, so that any trade secrets or programming techniques are not compromised.

 Decompilers are relatively new tools whose function depends on specific computers, operating systems and programming languages. Any change in one of these components will require developing or purchasing a new decompiler.

Slide 9/11: Advantages of Reverse Engineering

This Slide discusses about the various advantages of reverse-engineering.
Advantages are
 Faster development and reduced SDLC duration

 Creation of an improved system as drawbacks of existing system are taken care of

Slide 9/12: Structural Analysis

This Slide discusses about Structural Analysis.
It provides a framework of an application using data flow diagrams

Structured analysis (SA) is a framework for the physical components (data and process) of an application using data flow diagrams.

 Includes a physical model of the system, refined data and process allocations with a revised user interface.

It includes a physical model of the system, refined data and process allocations with a revised user interface.

 A project team member leads a review process of the system or a segment of the system.

Using SA, a review process in which a project team member leads one or more team members or customers through a segment of a deliverable he or she has produced can be implemented. Team members ask questions and make comments about technique, style, possible errors, violations or standards and other problems.

Slide 9/13: Steps in Structural Analysis

This Slide discusses about the various steps involved in Structural Analysis.
 It Involves
 Developing system context diagrams

 Performing hierarchical data flow

 Developing control transformations

 Developing mini-specifications

 Developing data dictionaries

 Developing all external events – inputs from external environment

 Defining single transformation data flow diagrams from each external event

Slide 9/14: Summary

This Slide summarizes the discussions in the session.
 Various alternatives are available to develop a system
 Each methodology has it’s own advantages and disadvantages

Session 10: The external auditor’s role and peer review
Slide 10/1: Introduction

This session concludes the module on systems development audit by considering the external financial auditor’s role in the system development process.

For the purpose of this session, the term external financial auditor is used to describe an auditor whose role is to provide an independent opinion on the appropriateness and reliability of an organisation’s financial statements. This activity is usually required by law.

During the previous sessions in this module we have considered what the system development life-cycle entails, and what the auditor’s concerns might be at each stage of it. We did not examine the auditor’s remit too closely, but it might have been that of:-

-
an internal auditor, who is tasked with reporting to top management on the adequacy and effectiveness of the organisation’s life-cycle method for building systems that represented a sound investment in IT;

-
a performance auditor, who is tasked with reviewing, retrospectively, a government funded organisation’s management of an unsuccessful or failed IT project on behalf of the legislature.

The external financial auditor will also be interested in certain types of IT development projects. These are systems that will play some part in processing the data that appears in the organisation’s financial statements. They will include financial application systems, such as general ledger or fixed assets management systems, and also IT infrastructure such as the computer and network operating systems which link the user to the application. The external financial auditor’s task is not, primarily, to report to the client or to the legislature, but to encourage the organisation to build systems that can provide the level of assurance required to express an opinion on their financial statements.

Method

Slide-show and discussion

Timing

45 minutes

Equipment required

Whiteboard

Flipchart

OHP/ or Audio Visual Unit

Handouts

Printed copies of the slides for the module.

Slide 10/2: topics covered

This slide summarises the topics that are to be covered during the session.

Lecturer - for the remainder of this session the ‘external financial auditor’ is referred to as ‘the financial auditor’.

Why involve the financial auditor?

· we consider the various reasons why the financial auditor ought to be involved in the systems development process.

Financial auditing requirements:

· here we consider what the financial auditors as a ‘ system user’, for auditing purposes;

· in common with other groups of systems users, the financial auditor will have particular requirements that the new system ought to satisfy;

· however, these requirements are very unlikely to be different from those of management.

Impacts of failing to get involved:

· finally we consider what consequences might arise if the financial auditor fails to become involved in the development process, either in time or at all.

Slide 10/3: why get involved?

In this slide we consider how the client regards the financial auditor, and what the wider public expect of the financial auditor regardless of what the letter of the law might require.

The Financial auditor’s role/responsibility:

· are governed by auditing standards;

· these are sometimes laid down by the SAI, sometimes by external professional bodies;

· they might require an opinion on the adequacy of controls within a new financial system;

· an example is the auditing standards of the Indian Audit and Accounts Department.

The financial auditor’s special skills or experience:

· stem from the nature of the financial auditing;

· the financial auditor is often perceived to be an expert in internal control, and is

· sometimes approached by the client for advice and assistance in their specification;

· what assistance can we provide without fear of compromising objectivity?

Bridging the “expectation gap”:

· the “expectation gap” is a problem that has arisen in the UK in recent years;

· it follows the failure of several large companies due to ineffective systems of internal control;

· the public expectation - these weaknesses should have been addressed by the financial auditor;

· but financial auditing is about certifying accounts, not systems of internal control.

Adding value to the audit:

· providing an independent view on internal control is a ‘value added’ audit activity;

· but government organisations are often over-sensitive to criticism, and fail to recognise this;

· commercial firms, however, earn money selling internal control reviews to private clients.

Makes the auditor’s work easier to do?:

· perhaps the most convincing reason why the financial auditor should be involved in development;

· if the new system meets the financial auditor’s requirements, auditing will be less problematic;

· this will help the financial auditor to provide a quick and efficient service.

Slide 10/4: are the accounts reliable?

This slide illustrates the problems that now confront the financial auditor when the accounts to be certified are produced by a computer system, which they often are.

The diagram illustrates one type of problem that often confronts the financial auditor.

The accounts are produced by a computer system. Not a free-standing systems, but one with many external connections. This might include a link to the rest of the world through the Internet.

Transactions are posted to the accounts from many places. They are often processed instantaneously (“real-time processing”) and, unlike in manual systems, are processed invisibly.

Use of IT bring with it additional risks to the reliability of the accounts that do not apply in quite the same way to manual systems.

Accounting data can be destroyed quickly and easily - it tends to be highly concentrated in the one place. It can also be corrupted (rendered unreliable) or destroyed by:-

· malfunctions in computer hardware and data communications equipment;

· use of the wrong versions of software and data files;

· errors in the software specification/design/development;

· both accidental and deliberate changes to the software, or to the data itself;

· computer virus attack.

And attacks on the integrity and availability of accounting data can take place invisibly from outside of the system (the result of external “hacking”).

Unless it is properly managed and controlled, IT will increase the risk of:-

· there being no account to audit;

· the information contained in the account is unreliable in a material way.

Slide 10/5: external financial auditing needs

Against the background of IT risks described on the previous slide, this slide goes on to consider the financial auditor’s requirements as a user of a computer system for auditing purposes (i.e. the “user requirements” to be included in the User Requirements Specification). It is most unlikely that the financial auditor’s requirements will differ in any significant way from those of management; it is really a matter of emphasis - management tend to concentrate on functional requirements and often over-look the non-functional requirements that are important to the financial auditor.

Lecturer - each of these requirements is covered in more detail in the following slides.

Financial audit trail:

· financial audit includes proving that a client’s financial statements are:-

· complete: requires a capability to trace individual transactions into the appropriate area within the financial statement;

· accurate: requires the financial statement to be analysed, and individual transactions tested (probably on a sample basis) to verify their correct valuation, regularity, etc

· an adequate financial audit trail is really a mandatory requirement; without an adequate audit trail

· it is unlikely that the financial auditor will be able to provide an unqualified opinion.

Data extraction facilities:

· a highly desirable, rather than mandatory, requirement;

· the ability to perform CAATs helps the financial auditor to undertake a quick and efficient audit.

Sound internal controls:

· a highly desirable, rather than mandatory, requirement;

· it is possible to audit a poorly controlled system; but

· sound internal controls help to reduce the possibility of material error in the financial statement,

· and the possibility of the auditor failing to detect them.

None of these requirements is unique to the financial auditor - they are some of the ‘non-functional’ requirements that should be specified for any financial system.

Slide 10/6: financial audit trail

This slide considers the need for a financial audit trail in more detail.

Lecturer - IT staff often understand ‘audit trail’ to refer to the different types of computer logs maintained by a system. While these are audit trails of a type, and are an essential aspect of good IT security, their purpose is to record system generated messages and system use. They are unlikely to be of any value in tracing individual financial transactions through a system.

Links entries in the accounts with their source:

· the object of a financial audit trail is to enable:-

· individual transactions to be traced between their source and destination in the accounts;

· summarised accounts to be analysed, and their constituents to be traced back to source;

· it includes any transactions that change an account.

Potential problems:

· during development users’ minds tend to focus on their functional requirements;

· the business functions that the system will perform - e.g. paying bills, placing purchase orders, etc

· sometimes they fail to consider the need for non-functional items, such as access controls;

· a financial audit trail is a non-functional requirement that is sometimes forgotten altogether;

· it might also be:-

· incomplete - does not allow transactions to be traced between different systems;

· transient - only exists for a short period and is then destroyed;

· transient audit trails occur where detailed transactions are summarised - perhaps monthly - usually to economise on storage space;

· nothing then remains to link the summarised account with its constituent parts;

· automatically generated postings - these are transactions generated within the computer system;

· for example, by computer programs that automatically:-

· re-order stock when stock levels fall below a certain point;

· calculate interest owing on debts;

· calculate depreciation on fixed assets;

· it might not be clear exactly what such automatic transactions relate to.

No audit trail - audit opinion will probably be qualified:

· because unable to form an opinion on the reliability of the information in the financial statement.

Slide 10/7: data extraction and CAATs

Not an essential financial auditing requirement, but an important one for helping the auditor to perform a quick and efficient audit. Performing various types of CAATs helps to speed up the audit. CAATs also make it feasible to process every transaction in an account, and this can provide strong assurance that there are no unusual items present and that no material items are untested.

Data extraction requires:

· good system documentation: to explain how to identify and capture required data. It should:-

· explain how the data is processed to produce the target account;

· identify in which database the required data is stored;

· define what each data item actually represents in business terms;

· define the format in which data item is stored (e.g. binary, character, packed decimal, etc);

· in-built report writer facilities: a report writer:-

· is an easy-to-use software package for generating ad-hoc reports from the system;

· should also be capable of copying selected items to an ASCII file;

· file transfer facility: computer program designed to transfer files between two computers.

· good data extraction facilities will help the financial auditor to:-

· identify the computer data required for audit testing;

· capture it from the system transfer it to a PC for processing with audit software;

· it will be necessary to reconcile captured data with the accounts to prove it is complete.

Need for on-line access:

· in on-line systems, the auditor may also benefit from read-only access to the system;

· useful for running queries and for viewing specific transaction details.

Embedded audit module:

· purpose-built audit software module that is linked to a target application;

· examines all data input to target application - copies selected items to an audit file;

· useful for interrogating systems that process very high volumes of transactions.

Integrated test facility:

· system is able to process dummy transactions in parallel with live data to prove process integrity;

· this feature must be carefully specified and designed to avoid risk of corrupting the accounts.

Slide 10/8: internal controls

A good standard of internal control is important to the client for preventing and detecting errors, be they accidental or deliberate. From the financial auditor’s point of view they reduce the risk of undetected material error being contained in the financial statement, and an incorrect audit opinion.

Important to design-in:

· it is important to include internal control requirements in the User Requirements Specification;

· internal controls can be very expensive to fit retrospectively, assuming it is technically feasible;

· security risk assessment (identify threats and appropriate controls) an important part of life-cycle;

· but is a non-functional requirement that is often over-looked or neglected.

Need for control over:

· as a matter of good practice financial systems should provide effective control over:-

· access: access to systems and data is appropriate to each user’s legitimate needs;

· data input: input is timely, complete, accurate and valid;

· processing: data is processed completely and accurately;

· output: data is distributed to appropriate recipients in a secure and timely manner;

· system change: to ensuring that all system changes are:-

· properly considered and approved before development;

· adequately tested prior to implementation;

· promptly reversible if they do not work as expected;

· some controls may be implemented as manual procedures;

· but automated controls are essential because of the:-

· high speed of processing and high volumes of transactions to be controlled, and the

· invisible nature of some types of IT threats (e.g. computer virus, hacking).

And don’t forget:

· backup, recovery and standby;

· these are essential components in any IT security strategy;

· they guard against data corruption/destruction and prolonged system failure;

· if data cannot be processed, no amount of internal control will result in an account to audit.

Slide 10/9: financial auditor’s involvement

This slide illustrates the points in the system development life-cycle at which the financial auditor should play a part in the development process. The diagram assumes a Waterfall approach to development. In RAD projects the financial auditor might brief the Senior User on financial audit objectives (but not specific solutions!) prior to a requirements-gathering JAD meeting, and perhaps attend the meeting as an observer rather than a participant.

Strategic plan:

· the financial auditor ought to be aware of the client’s IT Strategy;

· is forewarned of future IT developments that will affect the approach to financial auditing;

· avoids being too late to include audit requirements in the User Requirements Specification;

· although in practice this is what generally happens.

Establish interest:

· important to make contact with the Project Manager to advise on

· the financial auditor’s requirements as a system user;

· obtain a high level time-table for the development;

· ask to be included on the circulation list for:-

· System Implementation Time-table: dates for acceptance testing, data transfer, cut-over;

· System Testing Plan: will system be properly tested before go live?

· Data Transfer Plan: will financial data be transferred completely and accurately?

Specify audit requirements:

· confirm that the User Requirements Specification adequately specifies:-

· sufficient audit trails for financial auditing purposes;

· usable system documentation (i.e. in a narrative form);

· suitable data capture and extraction facilities;

· appropriate internal controls.

Install/test:

· verify that adequate arrangements have been made for acceptance testing and data transfer.

Review operational system:

· verify that internals controls have been implemented effectively, or

· identify inadequately managed risks to data integrity/availability, and make recommendations.

Slide 10/10: the price of failure

This slide describes the possible consequences should the financial auditor fail to get involved in a project to develop a new financial system at the appropriate stage, or at all. It may be impractical or impossible to remedy the deficiencies that result, and these may well pose auditing problems for a number of years.

Design omissions very expensive to correct retrospectively:

· in-house developed systems may be capable of modification, but

· significant retrospective changes involve much re-work and are therefore very expensive;

· enhancement of bought-in systems depend on the vendor being prepared to make the change;

· probably not if no commercial potential in it.

Client’s computer systems are:

· expensive to audit:

· inadequate internal controls: more transaction testing to compensate for higher risk;

· unable to run CAATs: more manual testing involved - slower audit;

· insecure: high risk to the:-

· effective conduct of the client’s business due to inadequate internal controls;

· financial auditor’s reputation due to the “expectation gap” not being bridged.

Possible qualified audit opinion on the account:

· stemming from:-

· uncertainty due to an inadequate audit trail;

· failure to produce accounts for audit due to consequences of system failure or disaster.

Slide 10/11: Peer review
This slide explains the concept of peer review in IT projects and the desired composition of peer review teams
Peer review:

Independent peer review is now an established discipline in most significant IT projects. It employs fellow practitioners from within an organisation and/or from across Government (sometimes extending to private sector) to perform a scrutiny of a project being undertaken elsewhere in the organisation. Reviews are carried out at key stages in a project, and are designed to provide:
· project team with the benefit of advice and guidance from fellow project practitioners and

· independent assurance that the project can progress safely to the next stage of development

Peer review teams:

Correct team composition is very vital for the success of peer review. The peer review teams:

· need the right mix of project/programme management and technical skills. The skills required may include strategic planning for IT, negotiating procurement contracts, managing suppliers and implementing new services
· need the right mix of background: they are drawn from as many diverse parts of the department, Government or private sector

· need legitimacy: individuals are acknowledged expert practitioners in their field

Slide 10/12: Gateway process

This slide explains the Gateway process implemented in UK
Gateway process:

The Gateway process represents the UK Government’s implementation of the principles of independent peer review. There was no cross-government structured review process in place before January 2001, when the Gateway process was introduced. The Office of the Government Commerce is the driving force behind the Gateway initiative. The process considers a project at critical points or “gates” in its development. There are six gates through which a project must pass during its lifecycle. The six gates are:
· Gate 0 – strategic assessment
· Gate 1 – justification of the Business case

· Gate 2 – approval of procurement method

· Gate 3 – approval of the award of contract

· Gate 4 – testing whether the project is ready to go live

· Gate 5 – identifying if the project has delivered the planned benefits

Detailed checklist has been prepared for each review stage to guide reviewers.

Gateway Team leader and review teams:

A “project profile model” has been prescribed to determine the level of risk of the project. The composition of the review team depends on the assessed level of risk as follows:
· for large, complex, high risk projects, the Gateway team leader is appointed on the advice of the Office of Government Commerce together with a review team that is independent of the department involved;

· for medium risk projects, an independent team leader is appointed with a team drawn from independent department staff
· for low-risk projects, departments appoint the independent team leader and reviewers from within the department

Slide 10/13: Involvement of SAI in peer review

This slide analyses the pros and cons of SAI involvement in the peer review process

SAI involvement in peer review process:

Although “Gateway” is an audit process, the National Audit Office of UK (NAO) does not have a direct role in the process. The co-ordination work is done by the Office of Government Commerce. NAO will only audit Gateway review records in the light of subsequent developments to ascertain whether the process works effectively. However, there is an opportunity for SAIs to conduct “Gateway” like milestone audits at the end of key stages of the project. Besides, mandate such involvement would require the availability of skilled staff in adequate number to carry such reviews. Audit at various stages may demand the deployment of large resources, which may be beyond the capacity of many SAIs. May be, the SAIs could get involved in peer reviews of select projects depending on their importance and risk. Such direct participation of SAIs presents both opportunities and risks.
Opportunities:

· By bringing emerging problems to top management’s attention at an early stage – rather than after the event – remedial action can be taken to prevent or minimise the damage that might otherwise result.
· The process could lead to an SAI building up a body of experience in IT project management, which could be gradually spread around the government domain through the work of review teams.

Risks:

· The project risk is unlikely to disappear entirely even after peer review
· There will be implications on the independence and objectivity of SAI should they fail to detect factors that subsequently result in an unsuccessful or abandoned project.
Slide 10/14: summary

This slide summarises the main topics covered in this session.

Financial auditors are system users:

· financial auditors’ requirements should be included in the User Requirements Specification;

· however, they do not different from management requirements.

Financial audit requirements are:

· a financial audit trail: for tracing financial transactions through, and between, systems;

· system documentation: to describe:-

· how data is processed by the system to form the accounts;

· how and where data is stored in the system;

· data capture and extraction facilities: might be one or more of:-

· report writing facilities: to capture selected data as an ASCII file;

· embedded audit module: real-time interrogation of high volume transaction streams;

· integrated test facility: real-time testing of the integrity of data processing;

· sound internal controls: to reduce risk of material error in the accounts. Includes:-

· access controls: to restrict access to financial data;

· input controls: to detect errors in input streams;

· processing controls: to detect errors during data processing;

· output controls: to ensure prompt and secure delivery to appropriate recipients;

· change controls: to ensure system changes are effectively controlled;

· business continuity: to ensure processing can be restored within an acceptable time-frame following a serious failure or disaster.

Get involved early -mistakes are very expensive to put right later ;

· know the client’s future plans for developing IT systems;

· get involved at project initiation to ensure financial audit requirements are taken into account.

Peer review;

· becoming increasingly popular with big projects
· reviews carried out at key stages of project by fellow practitioners

· SAI may get involved as a member of review team or carry out “milestone” audits independently

2
--

[image: image2.wmf][image: image3.wmf]_1231830506.doc

 [image: image1.png]

IT Audit

Training�

for INTOSAI

